Evaluations of Poly{vinyl alcohol)/Alginate Hydrogels Cross-linked by r-ray Irradiation Technique

  • Nam, Sang-Yong (Department of Polymer Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Nho, Young-Chang (Korea Atomic Energy Research Institut) ;
  • Chae, Gue-Tae (Department of Patholog) ;
  • Jang, Hong-Seok (Department of Therapeutic Radiolog) ;
  • Suh, Tae-Suk (Department of Biomedical Engineerin) ;
  • Ahn, Woong-Shick (Department of Biomedical Sciences, College of Medicine, Catholic University) ;
  • Ryu, Kyu-Eun (Department of Biomedical Sciences, College of Medicine, Catholic University) ;
  • Chun, Heung-Jae (Department of Biomedical Sciences, College of Medicine, Catholic University)
  • Published : 2004.04.01

Abstract

In this work, we prepared hydrogels for wound dressing from a mixture of poly(vinyl alcohol) (PVA) and alginate using the $\^$60/Co ${\gamma}$-ray irradiation technique. We examined the physical properties of these hydrogels, including gelation, water absorptivity, and gel strength, to evaluate the applicability of these hydrogels for wound dressings. The biocompatibility of these hydrogels was also evaluated in vitro, in cultures of mouse fibroblasts, and in vivo, by subcutaneous implantation studies in rats. The gel content and strength increased upon increasing the radiation dose and upon decreasing the concentration of alginate. The degree of swelling was inversely proportional to the gel content and strength. The degree of cytotoxicity of the ${\gamma}$-ray-treated hydrogels was ca. 60% compared to the (-) control (serum) after 1 day of incubation. When the incubations were prolonged up to 2 days, the toxicity of all the samples decreased remarkably and reached that of the control. Subcutaneous implantation studies in rats indicated that foreign body reactions occurring around the implanted hydrogels were moderate and became minimal upon increasing the implantation time.

Keywords

References

  1. Biomaterials v.25 M.M.Stevebs;H.F.Qanadilo;R.Langer;V.P.Shastri https://doi.org/10.1016/j.biomaterials.2003.07.002
  2. J. Biomed. Mater. Res. v.66A J.V.Edwards;A.F.Bopp;S.L.Batiste;W.R.Goynes https://doi.org/10.1002/jbm.a.10517
  3. J. Appl. Polym. Sci. v.82 Y.C.Nho;K.R.Park
  4. Biomaterials v.22 R.H.Schmedlen;K.S.Masters;J.L.West
  5. Biomaterials v.20 Y.Tabata;Y.Ikada https://doi.org/10.1016/S0142-9612(99)00121-0
  6. Biomaterials v.19 J.P.Draye;B.Delaey;A. Van de Voorde;A. Van Den Bulcke;B. De Reu;E.Schacht https://doi.org/10.1016/S0142-9612(98)00049-0
  7. Korea Polym. J. v.8 S.H.Yuk;S.H.Cho
  8. Korea Polym. J. v.7 J.W.Park;D.J.Lee;E.S.Yoo;S.S.Im;S.H.Kim;Y.H.Kim
  9. ASAIO v.11 J.M.Anderson
  10. J. Exp. Med. v.178 L.Tang;J.W.Eaton https://doi.org/10.1084/jem.178.6.2147
  11. J. Biomed. Mater. Res. v.41 W.J.Maloney;D.H.Sun;Y.Nakashima;R.James;R.L.Smith https://doi.org/10.1002/(SICI)1097-4636(19980905)41:3<371::AID-JBM5>3.0.CO;2-9
  12. Crit. Rev. Biocompatibility v.2 T.Rae
  13. J. Immunol. v.107 P.M.Henson
  14. Biomaterials v.22 M.J.Waring;D.Parsons https://doi.org/10.1016/S0142-9612(00)00254-4
  15. J. Biomed. Mater. Res. v.39 Y.Suzuki;Y.Nishimura;M.Tanihara;K.Suzuki;T.Nakamura;Y.Shimizu;Y.Yamawaki;Y.Kakimaru https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<317::AID-JBM20>3.0.CO;2-8
  16. Jpn. J. Artif. Organs v.15 Y.Imai;A.Watanabe
  17. Biomaterials v.23 Y.Ueyama;K.Ishikawa;T.Mano;T.Koyama;H.Nagatsuka;K.Suzuki;K.Ryoke https://doi.org/10.1016/S0142-9612(01)00332-5
  18. Ostomy Wound Manage. v.29 M.Limova
  19. J. Biomed. Mater. Res. v.15 P.M.Nermann;B.Zur;Y.Ehrenreich https://doi.org/10.1002/jbm.820150105
  20. J. Biomed. Mater. Res. v.14 I.V.Yannas;J.F.Burke https://doi.org/10.1002/jbm.820140108