Precipitation of $CaCO_3$ Crystals from Variously Supersaturated Solutions

다양한 과포화 조건하에서의 탄산염광물의 합성에 대한 연구

  • Hyeon Yoon (Korea Basic Science Institute, Hazardous Substances Research Team) ;
  • Kim, Soo-Jin (School of Earth and Environmental Science, Seoul National University)
  • Published : 2004.03.01

Abstract

Crystallization of CaC $O_3$ from the solutions of various degrees of supersaturation was carried out by a spontaneous precipitation method. The solution was kept at $25^{\circ}C$ and pH 6.9∼8.8. The solution compositions were varied in two ways: (1) The total carbonate, [C $O_3$]$_{Τ}$, to total calcium. [Ca]$_{Τ}$, ratios vary as ; [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$ >1. [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$=1, and [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$<1. (2) The total calcium concentration, [Ca]$_{Τ}$, held at 0.02 mo1/d $m^3$, 0.2 mo1/d $m^3$, and 0.4 mo1/d $m^3$. We found that the CaC $O_3$ phase crystallized from the solutions of [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$ $\geq$ 1 was mostly calcite with less than 1% of vaterite, while the CaC $O_3$ crystals precipitated from low carbonate concentration toward calcium concentration, [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$ < 1, were dominated by vaterite crystals. It appears that the polymorph of CaC $O_3$ precipitate was mainly controlled not by the calcium concentration but by the carbonate concentration during the spontaneous precipitation. Also, we found that the surface roughness of vaterite increased with decreasing carbonate concentration from 0.8 or 0.5 of [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$ ratios and the surface area of vaterite increased from 5.64∼7.34 $\mu\textrm{m}$ to 8.39∼10.3 $\mu\textrm{m}$.

자발적 침전법에 의하여 다양한 과포화 용액에서 탄산염광물을 합성하였다. 합성용액의 온도는 $25^{\circ}C$에서 유지 시켰고 pH범위는 6.9에서 8.8 이였다. 용액의 과포화도 조절 시 2가지 변수를 두어 농도를 변화 시켰다. (1) total carbonate의 농도와 total calcium의 농도비가 다음 세 가지 조건을 만족시키도록 변화시켰다: [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$ >1. [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$=1, and [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$<1. (2) 앞서 언급한 조건에 total calcium의 농도를 0.02 mol/d $m^3$, 0.2 mol/d $m^3$, 그리고 0.4 mo1/d $m^3$이 되도록 변화 시켰다. [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$$\geq$ 1의 조건 하에서 형성된 미립의 탄산염 광물은 대부분 거의 순수한 방해석으로 바테라이트가 1% 이하로 존재하였으며 이와는 달리 [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$ < 1 조건하에서는 거의 순수한 바테라이트가 합성되었다. 본 연구 결과 탄산염광물의 상은 합성 용액상의 [C $O_3$]$_{Τ}$ 농도보다는 [C $O_3$]$_{Τ}$의 농도에 의하여 좌우되는 것으로 나타났다. 또한 바테라이트의 합성 결과는 [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$의 비가 0.8 에서 0.5로 낮아짐에 따라 roughness가 증가하고 결과적으로 광물표면적이 5.64∼7.34 $\mu\textrm{m}$에서 8.39∼10.3 $\mu\textrm{m}$로 증가한다.

Keywords

References

  1. Cappellen V. P., Charlet L., Stumm W., and Wersin P. (1993) A surface complexation model of the carbonate mineral-aqueous solution interface. Geochim. Cosmochim. Acta 57, 3505-3518.
  2. Comans R.N. and J.J. Middelburg (1987) Sorption of trace metals on calcite:applicability of the surface precipitation model. Geochim. Cosmochim. Acta 51, 2587-2591.
  3. Davis J.A., C.C. Fuller, and A.D. Cook (1987) A model for trace metal sorption processes at the calcite surface: adsorption of $Cd^{2+}$ and subsequent solid solution formation. Geochim. Cosmochim. Acta 51, 1477-1490.
  4. Dove P. M. and Hochella M. F. (1993) Calcite precipitation mechanisms and inhibition by orthorphosphate: In situ observation by Scanning Force Microscopy. Geochim. Cosmochim. Acta 57, 705-714.
  5. Hillner P. E., Manne S., Gratz A. J., and Hansma P. K. (1992) AFM images of dissolution and growth on a calcite crystal. Ultamicroscopy 42-44, 1387-1393.
  6. Kile D. E., Eberl D. D., Hoch A. R., and Reddy M. M. (2000) An assessment of calcite crystal growth mechanisms based on crystal size distributions. Geochim. Cosmochim. Acta 64, 2937-2950.
  7. Leeuw N. H. and Parker S. C. (1998) Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach. J. Phys. Chem., B 102, 2914-2922.
  8. Liang Y. and Baer D. R. (1997) Anisotropic dissolution at the CaCO3 (104)-water interface. Surface science 373, 275-287.
  9. Miyazaki K. (1996) A numerical simulation of textural evolution due to Ostwald ripening in metamorphic rocks: A case for small amount of volume of dispersed crystals. Geochim. Cosmochim. Acta 60, 227-290.
  10. Mullin J. W. (1991) Crystallization. Butterworth-Heinemann 291-308.
  11. Paquette J. and Reeder R.J. (1995) Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim. Cosmochim. Acta 59, 735-749.
  12. Reeder R.J. (1996) Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochim. Cosmochim. Acta 60, 1543-1552.
  13. Stipp S. L. and Hochellar M. F. Jr. (1991) Structure and bonding environments at the calcite surfaces as observed with x-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). Geochim. Cosmochim. Acta 55, 1723-1736.
  14. Titiloye J. O., N.H. DE Leeuw, and Parker, S. C. (1998) Atomistic simulation of the differences between calcite and dolomite surfaces. Geochim. Cosmochim. Acta 62, No15, 2637-2641.
  15. Zachara J.M., Cowan C.E., and C.T. Resch (1991) Sorption of divalent metals on calcite. Geochim. Cosmochim. Acta 55, 1549-1562.