• Title/Summary/Keyword: 자발적 침전법

Search Result 2, Processing Time 0.016 seconds

Anisotropic Acorn-like Particle Fabrication Via a Dynamic Phase Separation Method (동적 상분리법을 이용한 이방성 도토리형상 입자 제조)

  • Park, Chul Ho;Baek, Il-hyun
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.61-65
    • /
    • 2019
  • Anisotropic particles have been issued in various fields due to their unique physical properties. Herein, a novel dynamic phase separation method (DPS) is introduced to fabricate anisotropic acorn-like nanoparticles. DPS consists of two dynamic conditions; solvent evaporation and nonsolvent induced precipitation. The bottom layer is controlled by feeding the water as a non-solvent diluent, and the phase separation of the upper layer relies on the diffusion and evaporation of a volatile good solvent. At this condition, the acorn-like particles were fabricated. Under a closed box filled with water (spontaneous phase separation), monodisperse polystyrene (PS) particles were synthesized. At the coexistence between DPS and spontaneous phase separation, the sizes of cap and particle were changed. Also, the volume of PS solutions influences on the particle shape. Since the unique structures could be utilized into various applications, if advanced techniques such as membrane-based controlled water feeding is developed, monodisperse acorn-like particles could be tuned.

Precipitation of $CaCO_3$ Crystals from Variously Supersaturated Solutions (다양한 과포화 조건하에서의 탄산염광물의 합성에 대한 연구)

  • Hyeon Yoon;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.11-21
    • /
    • 2004
  • Crystallization of CaC $O_3$ from the solutions of various degrees of supersaturation was carried out by a spontaneous precipitation method. The solution was kept at $25^{\circ}C$ and pH 6.9∼8.8. The solution compositions were varied in two ways: (1) The total carbonate, [C $O_3$]$_{Τ}$, to total calcium. [Ca]$_{Τ}$, ratios vary as ; [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$ >1. [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$=1, and [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$<1. (2) The total calcium concentration, [Ca]$_{Τ}$, held at 0.02 mo1/d $m^3$, 0.2 mo1/d $m^3$, and 0.4 mo1/d $m^3$. We found that the CaC $O_3$ phase crystallized from the solutions of [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$ $\geq$ 1 was mostly calcite with less than 1% of vaterite, while the CaC $O_3$ crystals precipitated from low carbonate concentration toward calcium concentration, [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$ < 1, were dominated by vaterite crystals. It appears that the polymorph of CaC $O_3$ precipitate was mainly controlled not by the calcium concentration but by the carbonate concentration during the spontaneous precipitation. Also, we found that the surface roughness of vaterite increased with decreasing carbonate concentration from 0.8 or 0.5 of [C $O_3$]$_{Τ}$/[Ca]$_{Τ}$ ratios and the surface area of vaterite increased from 5.64∼7.34 $\mu\textrm{m}$ to 8.39∼10.3 $\mu\textrm{m}$.