Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug (Department of Aerospace Engineering, University of Illinois at Urbana-Champaign Urbana) ;
  • Kwon, Chang-Oh (Korea Institute of Industrial Technology) ;
  • Song, Dong-Joo (School of Mechanical Engineering, Yeungnam University)
  • 발행 : 2004.01.01

초록

This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.

키워드

참고문헌

  1. Abe K., Nagano, Y. and Kondoh, T., 1994, 'A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows-1, Flow Field Calculation,' International Journal of Heat and Mass Transfer, Vol. 37, No. 1, pp. 139-151 https://doi.org/10.1016/0017-9310(94)90168-6
  2. Bachalo, W. D. and Johnson, D. A., 1979, 'An Investigation of Transonic Turbulent Turbulent Boundary Layer Separation Generated on an Axisymmetric Flow Model,' AIAA Paper 79-1479
  3. Baldwin, B. S. and Lomax, H., 1978, 'Thin Layer Approximation and Algebrai Model for Separated Turbulent Flows,' AIAA Paper 78-257
  4. Cebeci, T. and Smith, A. M. O., 1974, 'Analysis of Turbulent Boundary Layers,' Series in Applied Mathematics and Mechanics, Vol. XV, Academic Press
  5. Chien, K. Y., 1982, 'Prediction on hannel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model,' AIAA Journal, Vol. 20, No. 1, pp. 33-38 https://doi.org/10.2514/3.51043
  6. Coakly, T. J. and Huang, P. G., 1992, 'Turbulence Modeling For High Speed Flows,'AIAA Paper 92-0436
  7. Gerolymos, G. A., 1990, 'Implicit Multiple-Grid Solution of the Compressible Navier-Stokes Equations Using Turbulence Closure,' AIAA Journal, Vol. 28, No. 11, pp. 1707-1717 https://doi.org/10.2514/3.10464
  8. Godunov, S. K., 1959, 'A Finite Difference Method for the Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics,' Mat. Sbornik, Vol. 47, pp. 271-290
  9. Goldberg, U. C., 1991, 'Derivation and Testing of a One-Equation Model Based on Two Time Scales,' AIAA Journal, Vol. 29, No. 8, pp. 1337-1340 https://doi.org/10.2514/3.10741
  10. Grasso, F. and Falconic, D., 1993, 'High-Speed Turbulence Modeling of Shock-Wave/Boundary-Layer Interaction,' AIAA Journal, Vol. 31, No. 7, pp. 1199-1206 https://doi.org/10.2514/3.49062
  11. Hirsch, C., 1989, 'Numerical Computation of Internal and External Flows,' Vol. 2, JOHN WILEY & SONS, NY, pp. 493-594
  12. Johnson, D. A., Horstman, C. C. and Bachalo, W. D., 1982, 'Comparison Between Experiment and Prediction for a Transonic Turbulent Separated Flow,' AIAA Journal, Vol. 20, No. 4, pp. 737-744 https://doi.org/10.2514/3.51130
  13. Johnson, D. A. and King, L. S., 1985, 'A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layers,' AIAA Journal, Vol. 23, No. 11, pp. 1684-1692 https://doi.org/10.2514/3.9152
  14. Jones, W. P. and Launder, B. E., 1972, 'The Prediction of Laminarization with a Two-Equation Model of Turbulence,' International Journal of Heat and Mass Transfer, Vol. 15, No. 2, pp. 301-314 https://doi.org/10.1016/0017-9310(72)90076-2
  15. Kim, S. D., Kwon, C. O., Song, D. J. and Sa, J. Y., 1996, 'Performance Enhancement Study Using Passive Control of Shock-Boundary Layer Interaction in a Transonic/Supersonic Compressor Cascade,' Transactions of KSME, Vol. 20, No. 9, pp. 2944-2952
  16. Lam, C. K. and Bremhorst, K., 1981, 'A Modified Form of the ${\kappa}-{\epsilon}$ Model for Predicting Wall Turbulence,' ASME Journal of Fluids Engineering, Vol. 103
  17. Launder, B. E. and Sharma, B. I., 1974, 'Application of the Energy Dissipation Model of Turbulence to the Calculation of Flows near a Spining Disk,' Letters in Heat and Mass Transfer, Vol. 1, No. 2, pp. 131-138 https://doi.org/10.1016/0094-4548(74)90150-7
  18. Lombard, C. K., Bardina, J., Venkatapathy, E. and Oliger, J., 1983, 'Multi-dimensional Formulation of CSCM-An Upwind Flux Difference Eigenvector Split Method for the Compressible Navier-Stokes Equations,' AIAA Paper 83-1859
  19. Mason, M. L., Putnam, L. E. and Re, R. J., 1980, The Effect of Throat Contouring on Two-Dimesional Converging-Diverging Nozzles at Static Conditions, NASA Technical Paper 1704
  20. Menter, F. R., 1994, 'Influence of Freestream Values on Turbulence Model Predictions,' AIAA Journal, Vol. 30, No. 6, pp. 1657-1659 https://doi.org/10.2514/3.11115
  21. Menter, F. R., 1994, 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,' AIAA Journal, Vol. 30, No. 6, pp. 1598-1605 https://doi.org/10.2514/3.12149
  22. Morkovin, M. V., 1962, 'Effects of Compressibility on Turbulent Flows,' The Mechanics of Turbulence, A. Favre, Ed., Gordon and Breach, p. 367
  23. Muck, K. C. and Smits, A. J., 1983, 'The Behaviour of a Compressible Turbulent Boundary Layer under Incipient Separation Conditions,' in Turbulent Shear Flow, Vol. 4, Spring-Verlag, Berlin Heidelberg, pp. 235-245
  24. Osher, S., 1984, 'Riemann Solvers, the Entropy Condition, and Difference Approximations,' SIAM Journal of Numerical Analysis, Vol. 21, No. 2, pp. 217-235 https://doi.org/10.1137/0721016
  25. Patel, V. C., Rodi, W. and Scheuere, G., 1985, 'Turbulence Models for Near-Wall and Low-Reynolds-Number Flows: A Review,' AIAA Journal, Vol. 23, No. 9, pp. 1308-1319 https://doi.org/10.2514/3.9086
  26. Roe, P. L., 1981, 'The Use of the Riemann Problem in Finite-Difference Schemes,' Proceedings of the 7th International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 141, pp. 354-359 https://doi.org/10.1007/3-540-10694-4_54
  27. Sahu, J. and Danberg, J. E., 1986, 'Navier-Stokes Computations of Transonic Flows with a Two-Equation Turbulence Model,' AIAA Journal, Vol. 24, No. 11, pp. 1744-1751 https://doi.org/10.2514/3.9519
  28. Sarkar, S., Erlebacher, G., Hussaini, M. Y. and Kreiss, H. O., 1990, 'The Modeling of Turbulent Dissipation in Compressible Turbulence,' in Engineering Turbulence Modeling and Experiments, ed. Rodi & Ganic, Elsevier, pp. 109-118
  29. Settles, G. S., Fitzpatrick, T. J. and Bogdonoff, S. M., 1979, 'Detailed Study of Attached and Separated Compression Corner Flowfields in High Reynolds Number Supersonic Flow,' AIAA Journal, Vol. 17, No. 6, pp. 579-585 https://doi.org/10.2514/3.61180
  30. Shyy, W., Thakur, S. S., Ouyang, H., Liu, J. and Blosch, E., 1997, Computational Techniques for Complex Transport Phenomena, Cambridge University Press, Cambridge
  31. Smits, A. J. and Muck, K. C., 1987, 'Experimental Study of Three Shock Wave/Turbulent Boundary Layer Interactions,' Journal of Fluid Mechanics, Vol. 182, pp. 291-314 https://doi.org/10.1017/S0022112087002349
  32. So, R. M. C., Zhang, H. S., Gataki, T. B. and Speziale, C. G., 1994, 'Logarithmic Laws for Compressible Turbulent Boundary Layers,' AIAA Journal, Vol. 32, No. 12, pp. 2162-2168 https://doi.org/10.2514/3.12273
  33. Song, D. J., Kim, S. D., Kwon, C. O. and Seo, J. I., 1998, 'A Computational Off-Design Performance Analysis of Centrifugal Compressor Diffusers,' Computational Fluid Dynamics Journal, Vol. 6, No. 9, pp. 549-560
  34. Song, D. J., Hwang, H. C. and Lee, Y. I., 2001, 'A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade,' KSME International Journal, Vol. 15, No. 3, pp. 366-373
  35. Steger, J. L. and Warming, R. F., 1981, 'Flux Vector Splitting of the Inviscid Gasdynamics Equations with Application to Finite Difference Methods,' Journal Computational Physics, Vol. 40, No. 2, pp. 263-293 https://doi.org/10.1016/0021-9991(81)90210-2
  36. Van Leer B., 1982, 'Flux-Vector Splitting for Euler Equations,' Proceedings of the 8th International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 170, Springer-Verlag, Berlin, pp. 507-512 https://doi.org/10.1007/3-540-11948-5_66
  37. Visbal, M. and Knight, D., 1984, 'The Baldwin-Lomax Turbulence Model for Two-Dimensional Shock-wave/Boundary-Layer Interactions,' AIAA Journal, Vol. 22, No. 5, pp. 921-928 https://doi.org/10.2514/3.48528
  38. Warming, R. F. and Beam, R. M., 1976, 'An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation Law Form,' Journal of Computational Physics, Vol. 22, No. 1, pp. 87-110 https://doi.org/10.1016/0021-9991(76)90110-8
  39. Wilcox, D. C., 1993, 'Comparison of Two-Equation Turbulence Models for Boundary Layers with Pressure Gradient,' AIAA Journal, Vol. 31, No. 9, pp. 1414-1421 https://doi.org/10.2514/3.11790
  40. Wilcox, D. C. and Rubesin, M. W., 1980, Progress in Turbulence Modeling for Complex Flowfields Including the Effects of Compressibility, NASA TP 1517
  41. Yoon, B. K., Chung, M. K. and Park, S. O., 1995, 'A Computational Study on Shock-wave/Turbulent-boundary-layer Interaction with Two-equation Turbulence Models,' AIAA Paper 94-2276