• Title/Summary/Keyword: Turbulence Models

Search Result 609, Processing Time 0.024 seconds

Assessment of Turbulence Models for Engine Intake and Compression Flow Analysis (엔진 흡입.압축과정의 유동해석을 위한 난류모델의 평가)

  • Park, Kweon-Ha;Kim, Jae-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1129-1140
    • /
    • 2008
  • Many turbulence models have been developed in order to analyze the flow characteristics in an engine cylinder. Watkins introduced k-${\varepsilon}$ turbulence model for in-cylinder flow, and Reynolds modified turbulence dissipation rate by applying rapid transformation theory, Wu suggested k-${\varepsilon}-{\tau}$ turbulence model in which length scale and time scale are separated to introduce turbulence time scale, and Orszag proposed k-${\varepsilon}$ RNG model. This study applied the models to in-cylinder flow induced by intake valve and piston moving. All models showed similar flow fields during early stage of intake stroke. At the end of compression stroke, ${\kappa}-{\varepsilon}$ Watkins, ${\kappa}-{\varepsilon}$ Reynolds and ${\kappa}-{\varepsilon}$ RNG predicted well second and third vortex, especially ${\kappa}-{\varepsilon}$ RNG produced new forth vortex near central axis at the lower part of cylinder which was not predicted by the other models.

A Comparative Study of 2-Dimensional Turbulence Models for Thermal Discharge (2차원 온배수 난류모형의 비교연구)

  • Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.225-235
    • /
    • 1999
  • For a comparative evaluation of three turbulence models in the analyses of thermal discharge behavior into a crossflow, a 2-dimemsional near-field numerical model is developed. The selected models are k-$\varepsilon$ and k-ι turbulence models as a 2-equation turbulence model and a 4-equation turbulence model in which the transport equations for mean of the temperature fluctuation squared and its dissipation rate for the consideration of buoyancy production and turbulent heat flux terms are added to a k-$\varepsilon$ turbulence model. The developed models are applied to a steady flow in an open channel with simple geometry and the numerical results agree with the existing experimental data. Numerical results of buoyancy induced gravitational lateral spreading by 4-equation turbulence model agree with the experimental data better than those of 2-quation turbulence models. The flow patterns by 4 and 2-equation turbulence models are similar.

  • PDF

Study on the effect turbulence models for the flow through a subsonic compressor cascade (2차원 아음속 압축기 익렬유동에서의 난류모델 효과에 관한 연구)

  • Nam Gyeong-U;Baek Je-Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51-57
    • /
    • 2001
  • The eddy viscosity turbulence models were applied to predict the flows through a cascade, and the prediction performances of turbulence models were assessed by comparing with the experimental results for a controlled diffusion(CD) compressor blade. The original $\kappa-\omega$ turbulence model and $\kappa-\omega$ shear stress transport(SST) turbulence model were used as two-equation turbulence model which were enhanced for a low Reynolds number flow and the Baldwin-Lomax turbulence model was used as algebraic turbulence model. Farve averaged Wavier-Stokes equations in a two-dimensional, curvilinear coordinate system were solved by an implicit, cell-centered finite-volume computer code. The turbulence quantities are obtained by lagging when the men flow equations have been updated. The numerical analysis was made to the flows of CD compressor blade in a cascade at three different incidence angles (40. 43.4. 46 degrees). We found the reversion in the prediction performance of original $\kappa-\omega$ turbulence model and $\kappa-\omega$ SST turbulence model when the incidence angie increased. And the algebraic Baldwin-Lomax turbulence model showed inferiority to two-equation turbulence models.

  • PDF

FLOW SEPARATION PREDICTION ON TRANSONIC AIRCRAFT USING VARIOUS TURBULENCE MODELS (다양한 난류 모델을 이용한 천음속 항공기에서의 흐름 박리 예측)

  • Lee, Nam-Hun;Kwak, Ein-Keun;Lee, Seung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.420-427
    • /
    • 2011
  • In this study, numerical simulations of transonic aircraft configurations are performed with various turbulence models and the effect of turbulence models on flow separation are examined. A three-dimensional RANS code and three turbulence models are used for the study. The turbulence models incorporated to the code include Menter's ${\kappa}-{\omega}$ model, Coakley's $q-{\omega}$, and Huang and Coakley's ${\kappa}-{\omega}$, model. Using the code, numerical simulations of DLR-F6 configurations obtained from AIAA CFD Drag Prediction Workshop are conducted. Flow separations on the wing-body juncture and the wing lower surface near pylon are observed. and flow features of the regions are compared with experimental data and other numerical results.

  • PDF

PERFORMANCE ANALYSIS OF THE TURBULENCE MODELS FOR A TURBULENT FLOW IN A TRIANGULAR ROD BUNDLE

  • In W.K;Chun T.H;Myong H.K
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.63-66
    • /
    • 2005
  • A computational fluid dynamics(CFD) analysis has been made for fully developed turbulent flow in a triangular bare rod bundle with a pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence-driven secondary flow in the triangular subchannel. The nonlinear quadratic κ-ε models by Speziale[1] and Myong-Kasagi[2] predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic k-ε models by Shih et al.[3] and Craft et al.[4] showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model by Launder et al.[5} appeared to over predict the turbulence anisotropy in the rod bundle.

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRIPING (Thermal Striping 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.1-11
    • /
    • 2005
  • A numerical study of the evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple-jet flow with the same velocity but different temperatures. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLEC algorithm. The results of the present study show that the temporal oscillation of temperature is predicted by the SST and V2-f models, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. In addition, it is shown that both the two-layer and SST models have nearly the same capability predicting the thermal striping, and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

Performance Evaluation of Two-Equation Turbulence Models for 3D Wing-Body Configuration

  • Kwak, Ein-Keun;Lee, Nam-Hun;Lee, Seung-Soo;Park, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.307-316
    • /
    • 2012
  • Numerical simulations of 3D aircraft configurations are performed in order to understand the effects of turbulence models on the prediction of aircraft's aerodynamic characteristics. An in-house CFD code that solves 3D RANS equations and two-equation turbulence model equations are used. The code applies Roe's approximated Riemann solver and an AF-ADI scheme. Van Leer's MUSCL extrapolation with van Albada's limiter is also adopted. Various versions of Menter's $k-{\omega}$ SST turbulence models as well as Coakley's $q-{\omega}$ model are incorporated into the CFD code. Menter's $k-{\omega}$ SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared with computational results from the $3^{rd}$ AIAA CFD Drag Prediction Workshop. Numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared with computational results of the $2^{nd}$ AIAA CFD Drag Prediction Workshop. Aerodynamic characteristics as well as flow features are scrutinized with respect to the turbulence models. The results obtained from each simulation incorporating Menter's $k-{\omega}$ SST turbulence model variations are compared with one another.

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.

Comparison of Turbulence Models for the Prediction of Wakes around VLCC Hull Forms

  • Kim, Wu-Joan;Kim, Do-Hyun;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.27-48
    • /
    • 2001
  • Turbulent flow calculations are performed for the two modern practical VLCCs with the sable forebody and the slightly different afterbody, i.e. KVLCC and KVLCC2. Three $\textsc{k}-\varepsilon$ turbulence models are tested to investigate the differences caused by the turbulence models. The calculated results around the two VLCC hull forms using O-O grid topology and profile-fitted surface meshes are compared to the measured data from towing tank experiment. The realizable $\textsc{k}-\varepsilon$model provided realistic wake distribution with hook-like shape, while the standard and RNG-based $\textsc{k}-\varepsilon$models failed. It is very encouraging to see that the CFD with relatively simple turbulence closure can tell the difference quantitatively as well as qualitatively for the two hull forms with stern frameline modification.

  • PDF

Sensitivity Analysis for the Navier-Stokes Equations with Two-Equation Turbulence Models

  • 김창성;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.66-72
    • /
    • 2000
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. Both the direct differentiation code and the adjoint variable code adopt the same time integration scheme with the flow solver to efficiently solve the differentiated equations. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. Using two-equation turbulence models, it is observed that a usual assumption of constant turbulent eddy viscosity in adjoint methods may lead to seriously inaccurate results in highly turbulent flows.

  • PDF