• Title/Summary/Keyword: 직접수치해석

Search Result 551, Processing Time 0.028 seconds

A Numerical Analysis on the solution of Poisson Equation by Direct Method (직접법을 이용한 Poisson 방정식 수치해법에 관하여)

  • Y.S. Shin;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.62-71
    • /
    • 1995
  • In the numerical analysis of incompressible unsteady Navier-stokes equation, large time is required for solving the pressure Poisson equation of the elliptic type at each time step. In this paper, a numerical analysis by the direct method is carried out to solve the pressure Poisson equation and the computing time is analyzed as mesh size increases. The pressure Poisson equation can be transformed to the boundary value problem by the Green theorem. The computing time for the convolution type of the domain integral can be reduced by using F.F.T. and the computing time in the direct method depends entirely on obtaining the solution of the boundary value problem. The numerical analysis on the known solutions is carried out and compared for the verification of the direct method. And the numerical analysis on the body boundary and domain decomposition problem are carried out with the computing time less than O($n^{3}$) in the (n.n) mesh.

  • PDF

Direct Simulation of the Magnetic Interaction of Elliptic Janus Particles Suspended in a Viscous Fluid (점성유체에 분산된 타원형 야누스 입자의 자성 상호작용에 관한 직접수치해석)

  • Kim, Hei Eun;Kang, Tae Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.455-462
    • /
    • 2017
  • The magnetic interaction between elliptic Janus magnetic particles are investigated using a direct simulation method. Each particle is a one-to-one mixture of paramagnetic and nonmagnetic materials. The fluid is assumed to be incompressible Newtonian and nonmagnetic. A uniform magnetic field is applied externally in a horizontal direction. A finite-element-based fictitious domain method is employed to solve the magnetic particulate flow in the creeping flow regime. In the magnetic problem, the magnetic field in the entire domain, including the particles and the fluid, is obtained by solving the governing equation for the magnetic potential. Then, the magnetic forces acting on the particles are calculated via a Maxwell stress tensor formulation. In a single particle problem, it is found that the orientation angle at equilibrium is affected by the aspect ratio of the particle. As for the two-particle interaction, the dynamics and the final conformation of the particles are significantly influenced by the aspect ratio, the orientation, and the spatial positions of the particles. For the given positions of the particles, the fluid flow is also influenced by the orientation of each particle. The self-assembly structure of the particles is not a fixed one, but it varies with the above-mentioned factors.

Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading (폭발하중을 받는 철근콘크리트 부재의 직접전단 파괴 및 휨 파괴 저항성능 평가를 위한 수치해석 모델 개발)

  • Ju, Seok Jun;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.393-401
    • /
    • 2021
  • In this paper, we proposed a numerical model based on moment-curvature, to evaluate the resistance of reinforced concrete (RC) members subjected to blast loading. To consider the direct shear failure mode, we introduced a dimensionless spring element based on the empirical direct shear stress-slip relation. Based on the dynamic increase factor equations for materials, new dynamic increase factor equations were constructed in terms of the curvature rate for the section which could be directly applied to the moment-curvature relation. Additionally, equivalent bending stiffness was introduced in the plastic hinge region to consider the effect of bond-slip. To verify the validity of the proposed model, a comparative study was conducted against the experimental results, and the superiority of this numerical model was confirmed through comparison with the analytical results of the single-degree of freedom model. Pressure-impulse (P-I) diagrams were produced to evaluate the resistance of members against bending failure and direct shear failure, and additional parametric studies were conducted.

Finite Element Simulation of High-Speed Impact in Plane Structure (고속충격하중을 받는 평면구조의 유한요소해석)

  • 황갑운
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.119-128
    • /
    • 1999
  • 본 연구는 등방탄성체에 고속충격하중이 작용하는 경우에 대한 유한요소해석에 관한 것으로 대상구조는 여러 가지 모양의 2차원 평면구조를 택하였다. Galerkin 방법을 이용하여 유한요소 정식화하였으며 직접시간적분법에 의해 수치해를 구하였다. 본 해석에서는 균열이 없는 평판으로 수치해와 이론해를 비교하여 수치해의 신뢰성을 확인하였으며, 0°, 30°, 45°경사 균열이 없는 평판에 적용한 3가지 예를 분석하였다. 수치해석 결과는 이론해의 결과와 상호 잘 일치하였다.

  • PDF

Direct Numerical Simulation of Low Frequency Instability in a Hybrid Rocket with Equivalence Ratio Effects (하이브리드 로켓의 저주파불안정성에 미치는 당량비 영향 직접수치해석)

  • Choi, Hyosang;Lee, Changjin;Kang, Sang Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.60-67
    • /
    • 2019
  • To understand the low frequency instability(LFI) characteristics in hybrid rockets combustion, effects of equivalence ratio variations on the phase shift between pressure and heat release oscillations were investigated by using the direct numerical simulation. The change in the equivalence ratio of the main chamber was simulated by the temperature and composition variation of the combustion gas introduced into the post-combustion chamber. In the results, additional combustion appeared along with vortex generation at the backward step, and combustion pressure and heat release oscillations were observed as the vortex moved. In addition, the results confirmed that the phase difference between the pressure and heat release oscillation shifts because of the changes in the propagation velocity of pressure wave as the temperature of combustion gas changes.

특집: 미래주도형 성형공정과 수치 해석기술 - 전자기 성형과 수치 해석 기술

  • Kim, Dae-Yong;Kim, Ji-Hun
    • 기계와재료
    • /
    • v.23 no.3
    • /
    • pp.30-47
    • /
    • 2011
  • 전자기 성형 공정은 강한 전이 자기장을 가공하고자 하는 금속에 직접 작용시켜 금속을 변형시키는 가공 기술로 최근 난성형성 소재의 성형 및 이종 소재의 접합 등에 장점을 가지고 있어 관심이 높아지고 있다. 또한, 전자기 성형 공정을 기존의 스템핑, 하이드로포밍과 같은 성형 공정의 단점을 보완하는 공정으로 이용하여 자동차 부품에 적용하려는 연구가 시도되고 있다. 전기, 자기, 열, 변형을 포함하는 복잡한 물리 현상이 관련되어 있는 전자기 성형 공정을 모사하기 위해서 각 물리 현상들을 연계하여 수치적으로 계산해 내는 기술에 대한 연구가 다각도로 진행 중이다. 본 고에서는 전자기 성형 기술에 대한 개념과 최신 국내외 기술 동향을 소개한 후, 전자기 성형의 수치 해석 기술에 대한 연구 동향을 정리하였다.

  • PDF

Investigation on Method Avoiding Non-uniqueness of Direct Boundary Element Method in Acoustic Wave Radiation Problem (음향방사문제에서 직접경계요소법의 비유일성 회피방법에 관한 고찰)

  • Kim, Kook-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2328-2333
    • /
    • 2010
  • A direct boundary element method(DBEM) is widely applied for various acoustic wave problems. But this method has numerically non-unique solutions around the eigenfrequencies of the interior Dirichlet problem for the region enveloped with the acoustic boundary. A CHIEF method had been generally adopted to resolve the non-uniqueness problem and a new technique called ICA-Ring method has been suggested recently. In this paper, the characteristics of two techniques for avoiding the non-uniqueness of DBEM are examined and numerical codes embodying both techniques are developed. Numerical calculations are also carried out for an uniformly pulsating sphere, of which the results are investigated by including the comparisons with theoretical solutions.

Transient coupled thermoelastic analysis by finite element method (유한요소법에 의한 과도연성 열탄성 해석)

  • 이태원;심우진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1408-1416
    • /
    • 1990
  • A powerful and efficient method for finding approximate solutions to initial-boundary-value problems in the transient coupled thermoelasticity is formulated in time domain using the finite element technique with time-marching strategy. The final system equations can be derived by the Guritin's variational principle using the definition of convolution integral. But, the finite element formulation for the equations of motion is modified by differentiating in time. Numerical results to some test problems are compared with analytical and other sophisticated approximate solutions. Stable responces are observed in all the given examples irrespective of incremental time steps and mesh shapes. In addition, it is shown that good numerical results are obtained even in coarser mesh or larger time step comparing to other numerical methods.

A Study on Shear Strength under Constant Normal Load Conditions by Using 3DEC (3DEC을 이용한 일정수직하중 조건에서의 전단강도에 관한 연구)

  • Noh, Young-Mok;Mun, Hong-Ju;Kim, Ki-Ho;Jang, Won-Yil
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.46-54
    • /
    • 2014
  • Direct shear tests have been initiated to understand the characteristics of joints which crucially affect the stability of rock mass. In this research, numerical approach in direct shear tests has been initiated using 3DEC on the basis of 3D distinct element method. Normal loads were altered in four different levels on artificial joint tests depending on the sawtooth angle and strengths on constant normal stress conditions, measuring the peak shear strength according to the direct shear tests under laboratory condition. Also results obtained from mechanical properties through laboratory test were used to perform numerical modeling, and shear strength obtained from the modeling was used to compare with laboratory direct shear test. As a result numerical analysis from distinct element method can simulate well on the shear behavior of rockmass.