References
- Ahmed, Z., Smith, B.J. and Pillay, T.S. (2000). The APS adapter protein couples the insulin receptor to the phosphorylation of c-Cbl and facilitates ligand-stimulated ubiquitination of the insulin receptor. FEBS Lett. 475, 31-34 https://doi.org/10.1016/S0014-5793(00)01621-5
- Ahn, M.Y., Katsanakis, K.D., Bheda, F. and Pillay, T.S. (2004). Primary and essential role of the adaptor protein APS for recruitment of both c-Cbl and its associated protein CAP in insulin signaling. J. BioI. Chem. 279,21526-21532 https://doi.org/10.1074/jbc.M307740200
- Alessi, D.R, James, S.R, Downes, C.P., Holmes, A.B., Gaffney, P.R, Reese, C.B. and Cohen, P. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curro BioI. 7,261-269 https://doi.org/10.1016/S0960-9822(06)00122-9
- Arribas, M., Valverde, A.M., Burks, D., Klein, J., Farese, R.Y., White, M.F and Benito, M. (2003). Essential role of protein kinase C zeta in the impairment of insulin-induced glucose transport in IRS-2-deficient brown adipocytes. FEBS Lett. 536, 161-166 https://doi.org/10.1016/S0014-5793(03)00049-8
- Attele, A.S., Zhou, Y.P., Xie, J.T., Wu, J.A, Zhang, L., Dey, L., Pugh, W., Rue, P.A, Polonsky, K.S. and Yuan, C.S. (2002). Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 51, 1851-1858 https://doi.org/10.2337/diabetes.51.6.1851
- Bailey, C.J. and Turner, R.C. (1996). Metformin. N. Engl. J. Med. 334, 574-579 https://doi.org/10.1056/NEJM199602293340906
- Baldwin, S.A (1993). Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim. Biophys. Acta. 1154, 17-49 https://doi.org/10.1016/0304-4157(93)90015-G
- Baumann, C.A, Ribon, V., Kanzaki, M., Thurmond, D.C., Mora, S., Shigematsu, S., Bickel, P.E., Pessin, J.E. and Saltiel, A.R. (2000). CAP defines a second signalling pathway required for insulinstimulated glucose transport. Nature. 407,202-207 https://doi.org/10.1038/35025089
- Carvalho, E, Schellhorn, S.E., Zabolotny, J.M., Martin, S., Tozzo, E., Peroni, O.D., Houseknecht, K.L., Mundt, A., James, D.E. and Kahn, B.B. (2004). GLUT4 overexpression or deficiency in adipocytes of transgenic mice alters the composition of GLUT4 vesicles and the subcellular localization of GLUT4 and insulinresponsive aminopeptidase. J. BioI. Chem. 279, 21598-21605 https://doi.org/10.1074/jbc.M312269200
- Chiang, S.H., Baumann, C.A., Kanzaki, M., Thurmond, D.C., Watson, R.T., Neudauer, C.L., Macara, I.G., Pessin, J.E. and Saltiel, A.R (2001). Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TCIO. Nature. 410, 944-948 https://doi.org/10.1038/35073608
- Choi, S.B., Wha, J.D. and Park, S. (2004). The insulin sensitizing effect of homoisoflavone-enriched fraction in Liriope platyphylla Wang et Tang via PI3-kinase pathway. Life Sci. 75, 2653-2664 https://doi.org/10.1016/j.lfs.2004.04.039
- Choi, S.B., Wha, J.D. and Park, S. (2004). The insulin sensitizing effect of homoisoflavone-enriched fraction in Liriope platyphylla Wang et Tang via PI3-kinase pathway. Life Sci. 75, 2653-2664 https://doi.org/10.1016/j.lfs.2004.04.039
- Ciaraldi, T.P., Huber-Knudsen, K., Hickman, M. and Olefsky, J.M. (1995). Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents. Metabolism. 44, 976-981 https://doi.org/10.1016/0026-0495(95)90092-6
- Ciaraldi, T.P., Kong, A.P., Chu, N.Y., Kim, D.D., Baxi, S., Loviscach, M., Plodkowski, R., Reitz, R., Caulfield, M., Mudaliar, S. and Henry, R.R. (2002). Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes. 51, 30-36 https://doi.org/10.2337/diabetes.51.1.30
- Czech, M.P. and Corvera, S. (1999). Signaling mechanisms that regulate glucose transport. J. Bioi. Chem. 274, 1865-1868 https://doi.org/10.1074/jbc.274.4.1865
-
DeFronzo, R.A. (1988). The triumvirate:
$\beta$ -cell, muscle, liver: a collusion responsible for NIDDM. Diabetes. 37,667-687 https://doi.org/10.2337/diab.37.6.667 - DeFronzo, R.A., Gunnarsson, R., Bjorkman, O., Olsson, M. and Wahren, J. (1985). Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J. Clin. Invest. 76, 149-155 https://doi.org/10.1172/JCI111938
- Ducluzeau, P.H., Fletcher, L.M., Vidal, H., Laville, M. and Tavare, J.M. (2002). Molecular mechanisms of insulin-stimulated glucose uptake in adipocytes. Diabetes Metab. 28, 85-92
- Fajans, S.S and Conn, J.W. (1965). Prediabetes, subclinical diabetes, and latent clinical diabetes: interpretation, diagnosis and treatment. In: On the Nature and Treatment of Diabetes (D.S. Leibel and G.S. Wrenshall, Eds.), pp. 641-656. Excerpta Medica, Amsterdam
- Farese, R.V., Ishizuka, T., Standaert, M.L. and Cooper, D.R. (1991). Sulfonylureas activate glucose transport and protein kinase C in rat adipocytes. Metabolism. 40, 196-200 https://doi.org/10.1016/0026-0495(91)90174-U
- Ginsberg, H., Kimmerling, G., Olefsky, J.M. and Reaven, G.M. (1975). Demonstration of insulin resistance in untreated adult onset diabetic subjects with fasting hyperglycemia. J. Clin. Invest. 55, 454-461 https://doi.org/10.1172/JCI107951
- Guyton, A.C. and Hall, J.E. (1996). Textbook of medical physiology. Elsevier Science
- Hill, M.M., Clark, S.F., Tucker, D.F., Birnbaum, M.J., James, D.E. and Macaulay, S.L. (1999). A role for protein kinase Bbeta/Akt2 in insulin-stinmlated GLUT4 translocation in adipocytes. Mol. Cell Biol. 19,7771-7781 https://doi.org/10.1128/MCB.19.11.7771
- Hundal, R.S., Krssak, M., Dufour, S., Laurent, D., Lebon, Y., Chandramouli, V., Inzucchi, S.E., Schumann, W.C., Petersen, KF., Landau, B.R and Shulman, G.I. (2000). Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 49, 2063-2069 https://doi.org/10.2337/diabetes.49.12.2063
- Inzucchi, S.E. (2002). Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 287, 360-372 https://doi.org/10.1001/jama.287.3.360
- James, D.E. and Piper, R.C. (1994). Insulin resistance, diabetes, and the insulin-regulated trafficking of GLUT-4. J. Cell Biol. 126, 1123-1126 https://doi.org/10.1083/jcb.126.5.1123
- Jiang, T., Sweeney, G., Rudolf, M.T., Klip, A., Traynor-Kaplan, A and Tsien, R.Y. (1998). Membrane-permeant esters of phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 11017-11024 https://doi.org/10.1074/jbc.273.18.11017
- Jun, H., Bae, H.Y., Lee, B.R., Koh, K.S., Kim, Y.S., Lee, K.W., Kim, H. and Yoon, J. (1999). Pathogenesis of non-insulindependent (type II) diabetes mellitus (NIDDM) - genetic predisposition and metabolic abnormalities. Adv. Drug Deliv. Rev. 35,157-177 https://doi.org/10.1016/S0169-409X(98)00071-4
- Kahn, B.B. (1992). Facilitative glucose transporters: regulatory mechanisms and dysregulations in diabetes. J. Clin. Invest. 89, 1367-1374 https://doi.org/10.1172/JCI115724
- Khil, L.Y., Cheon, A.J., Chang, T.S. and Moon, C.K (1997). Effects of calcium on brazilin-induced glucose transport in isolated rat epididymal adipocytes. Biochem. Phannacol. 54, 97-101 https://doi.org/10.1016/S0006-2952(97)00145-7
- Khil, L.Y, Han, S.S., Kim, S.G., Chang, T.S., Jeon, S.D., So, D.S. and Moon, C.K (1999). Effects of brazilin on GLUT4 recruitment in isolated rat epididymal adipocytes. Biochem. Phannacol. 58, 1705-1712 https://doi.org/10.1016/S0006-2952(99)00275-0
- Kotani, K., Carozzi, A.J., Sakaue, H., Hara, K, Robinson, L.J., Clark, S.F., Yonezawa, K, James, D.E. and Kasuga, M. (1995). Requirement for phosphoinositide 3-kinase in insulin-stimulated GLUT4 translocation in 3T3-Ll adipocytes. Biochem. Biophys. Res. Commun. 209, 343-348 https://doi.org/10.1006/bbrc.1995.1509
- Kruszynska, Y.T. and Olefsky, J.M. (1996). Cellular and molecular mechanisms of non-insulin dependent diabetes mellitus. J. Investig. Med. 44,413-428
- Lane, M.D., Flores-Riveros, J.R., Hresko, Re., Kaestner, K.H., Liao, K, Janicot, M., Hoffman, R.D., McLenithan, J.C., Kastelic, T. and Christy, R.J. (1990). Insulin-receptor tyrosine kinase and glucose transport. Diabetes Care. 13, 565-575 https://doi.org/10.2337/diacare.13.6.565
- Liu, M.-L., Gibbs, E.M., McCoid, S.C., Milici, A.J., Stukenbrok, H.A., McPherson, R.K., Treadway, J.L. and Pessin, J.E. (1993). Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proc. Natl. Acad. Sci. USA. 90, 11346-11350 https://doi.org/10.1073/pnas.90.23.11346
- Maier, V.H., Melvin, D.R., Lister, C.A., Chapman, H., Gould, G.W. and Murphy, G.J. (2000). v- and t-SNARE protein expression in models of insulin resistance: normalization of glycemia by rosiglitazone treatment corrects overexpression of cellubrevin, vesicle- associated membrane protein-2, and syntaxin 4 in skeletal muscle of Zucker diabetic fatty rats. Diabetes. 49, 618-625 https://doi.org/10.2337/diabetes.49.4.618
- Martin, S., Rarnm, G., Lyttle, C.T., Meerloo, T., Stoorvogel, W. and James, D.E. (2000). Biogenesis of insulin-responsive GLUT4 vesicles is independent of brefeldin A-sensitive trafficking. Traffic. I, 652-660 https://doi.org/10.1034/j.1600-0854.2000.010809.x
- Mastick, C.C., Brady, M.J. and Saltiel, A.R. (1995). Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol. 129,1523-1531 https://doi.org/10.1083/jcb.129.6.1523
- Meyer, C., Dostou, J.M., Welle, S.L. and Gerich, J.E. (2002). Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 282, E419-427 https://doi.org/10.1152/ajpendo.00032.2001
- Millar, C.A, Shewan, A, Hickson, G.R., James, D.E. and Gould, G.W. (1999). Differential regulation of secretory compartments containing the insulin-responsive glucose transporter 4 in 3T3Ll adipocytes. Mol. Biol. Cell. 10, 3675-3688 https://doi.org/10.1091/mbc.10.11.3675
- Moller, D.E. (2001). New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 414:821-827 https://doi.org/10.1038/414821a
- Moore, M.C., Cherrington, A.D. and Wasserman, D.H. (2003). Regulation of hepatic· and peripheral glucose disposal. Best Pract. Res. Clin. Endocrinol. Metab. 17, 343-364 https://doi.org/10.1016/S1521-690X(03)00036-8
- MUdaliar, S. and Henry, R.R. (2001). New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu. Rev. Med. 52, 239-257 https://doi.org/10.1146/annurev.med.52.1.239
- Pagliassotti, M.J. and Horton, T.J. (1994). Hormonal and neural regulation of hepatic glucose uptake. In The Role of the Liver in Maintaining Glucose Homeostasis (M.J. Pagliassotti, S. Davis and A.D. Cherrington Eds.), pp. 45-70. R.G. Landis, Austin, TX
- Pirart, J. (1978). Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care. 1, 168-188 https://doi.org/10.2337/diacare.1.3.168
- Randhawa, V.K., Bilan, P.J., Khayat, Z.A., Daneman, N., Liu, Z., Rarnlal, T., Volchuk, A., Peng, X..R., Coppola, T., Regazzi, R.,Trimble, W.S. and Klip, A (2000). VAMP2, but not VAMP3/cellubrevin, mediates insulin-dependent incorporation of GLUT4 into the plasma membrane of L6 myoblasts. Mol. Biol. Cell. 11, 2403-2417 https://doi.org/10.1091/mbc.11.7.2403
- Rea, S. and James, D.E. (1997). Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes. 46, 1667-1677 https://doi.org/10.2337/diabetes.46.11.1667
- Rea, S., Martin, L.B., McIntosh, S., Macaulay, S.L., Ramsdale, T., Baldini, G. and James, D.E. (1998). Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface. J. Biol. Chem. 273, 18784-18792 https://doi.org/10.1074/jbc.273.30.18784
- Reaven, G.M. (1983). Insulin resistance in noninsulin-dependent diabetes mellitus. Does it exist and can it be measured? Am. J. Med. 74, 3-17
- Ribon, V. and Saltiel, A R (1997). Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-Ll adipocytes. Biochem. J. 324, 839-845 https://doi.org/10.1042/bj3240839
- Ribon, V., Printen, J.A., Hoffman, N.G., Kay, B.K. and Saltiel, A.R. (1998). A novel, multifuntional c-Cbl binding protein in insulin receptor signaling in 3T3-Ll adipocytes. Mol. Cell Biol. 18, 872-879 https://doi.org/10.1128/MCB.18.2.872
- Rifkin, H. and Porte, D. (1997). Diabetes Mellitus, Theory and Practice. Elsevier Science
- Sarges, R, Hank, R.F., Blake, J.F., Bordner, J., Bussolotti, D.L., Hargrove, D.M., Treadway, J.L. and Gibbs, E.M. (1996). Glucose transport-enhancing and hypoglycemic activity of 2-methyl-2-phenoxy-3-phenylpropanoic acids. J. Med. Chem. 39, 4783-4803 https://doi.org/10.1021/jm950364f
- Shepherd, P.R., Withers, D.J. and Siddle, K. (1998). Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333,471-490 https://doi.org/10.1042/bj3330471
- Shintani, M., Nishimura, H., Yonemitsu, S., Ogawa, Y, Hayashi, T., Hosoda, K., Inoue, G. and Nakao, K. (2001). Troglitazone not only increases GLUT4 but also induces its translocation in rat adipocytes. Diabetes. 50, 2296-2300 https://doi.org/10.2337/diabetes.50.10.2296
- Simpson, F, Whitehead, J.P. and James, D.E. (2001). GLUT4--at the cross roads between membrane trafficking and signal transduction. Traffic. 2, 2-11 https://doi.org/10.1034/j.1600-0854.2001.020102.x
- Standaert, M,L., Bandyopadhyay, G., Kanoh, Y., Sajan, M.P. and Farese, R.V. (2001). Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T41O) and autophosphorylation (T560) sites. Biochemistry. 40, 249-255 https://doi.org/10.1021/bi0018234
- Strowski, M.Z., Li, Z., Szalkowski, D., Shen, X., Guan, X.M., Juttner, S., Moller, D.E. and Zhang, B.B. (2004). Small-molecule insulin mimetic reduces hyperglycemia and obesity in a nongenetic mouse model of type 2 diabetes. Endocrinology. 145, 5259-5268 https://doi.org/10.1210/en.2004-0610
- Tanner, L.I. and Lienhard, G.E. (1987). Insulin elicits a redistribution of transferrin receptors in 3T3-L1 adipocytes through an increase in the rate constant for receptor externalization. J. Biol. Chem. .262, 8975-8980
- Tozzo, E., Shepherd, P.R., Gnudi, L. and Kahn, B.B. (1993). Increased basal and insulin-stimulated glucose transport and metabolism in isolated adipocytes from transgenic mice overexpressing GLUT4 selectively in fat. Diabetes. 42 (Suppl. 1), 13A
- Tsuneki, H., Ishizuka, M., Terasawa, M., Wu, J.B., Sasaoka, T. and Kimura, I. (2004). Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol. 4, 18 https://doi.org/10.1186/1471-2210-4-18
- UK Prospective Diabetes Study (UKPDS) Group. (1998). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837-853 https://doi.org/10.1016/S0140-6736(98)07019-6
- Wallberg-Henriksson, H. and Zierath, J.R. (2001). GLUT4: a key player regulating glucose homeostasis? Insights from transgenic and knockout mice (review). Mol. Membr. Biol. 18,205-211 https://doi.org/10.1080/09687680110072131
- Watson, R.T., Shigematsu, S., Chiang, S.H., Mora, S., Kanzaki, M., Macara, I.G., Saltiel, A.R and Pessin, J.E. (2001). Lipid raft microdomain compartmentalization of TCIO is required for insulin signaling and GLUT4 translocation. Cell. BioI. 154, 829-840 https://doi.org/10.1083/jcb.200102078
- World Heath Organization Study Group (1985). Diabetes mellitus. WHO Tech. Rep. Ser. 727, 1-113
- Wu, L.Y, Juan, C.C., Hwang, L.S., Hsu, Y.P., Ho, P.H. and Ho, L.T. (2004). Green tea supplementation ameliorates insulin resistance and increases glucose transporter IN content in a fructose-fed rat model. Eur. J. Nutr. 43, 116-124 https://doi.org/10.1007/s00394-004-0450-x
- Yoon, J.W. and Jun, H.S. (1998). Insulin-dependent diabetes mellitus. In Encyclopedia ofImmunology (M.M. Roitt and PJ. Delves, Eds.), pp. 1390-1398. Academic Press, London
- Yoon, J.W. and Jun, H.S. (2001). Cellular and molecular pathogenic mechanisms of insulin-dependent diabetes. Ann. N. Y. Acad. Sci. 928, 200-211 https://doi.org/10.1111/j.1749-6632.2001.tb05650.x
- Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y, Royo, I., Vilella, D., Diez, M.T., Pelaez, F., Ruby, C., Kendall, R.L., Mao, X., Griffm, P., Calaycay, J., Zierath, J.R, Heck, J.V., Smith, R.G. and Moller, D.E. (1999). Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science. 284,974-977 https://doi.org/10.1126/science.284.5416.974
- Zimmerman, B.R. (1997). Sulfonylureas. Endocrinol. Metab. Clin. NorthAm. 26, 511-521 https://doi.org/10.1016/S0889-8529(05)70264-4