Lead increases Nitric Oxide Production in Immunostimulated Glial Cells

  • Choi, Min-Sik (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Shin, Chan-Young (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Ryu, Jae-Ryun (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Woo-Jong (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Cheong, Jae-Hoon (College of Pharmacy, Sahmyook University) ;
  • Choi, Chang-Rak (Department of Neurosurgery, St.Marys Hospital, The Catholic University of Korea) ;
  • Kim, Won-Ki (Department of Pharmacology, Ewha Institute of Neuroscience, Ewha Medical School) ;
  • Ko, Kwang-Ho (Department of Pharmacology, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Published : 2004.12.01

Abstract

Lead has long been considered as a toxic environmental pollutant that severely damages the central nervous system. In various neurogenerative diseases, actrocytes become activated by proinflammatory cytokines. In the present study, we investigated whether lead (Pb$^{2+}$) affects inducible nitric oxide synthase (iNOS) expression in activated glial cells. Rat primary glial cells were stimulated with lipopolysaccharide (LPS, 1 ${\mu}$g/ml) plus IFN$_{\gamma}$(100 U/ml). Pre-treatment of Pb$^{2+}$ increased nitric oxide (NO) production in LPS/IFN$_{\gamma}$-stimulated glial cells. Lead itself, however, suppressed the basal production of NO in control glial cells. Addition of the iNOS inhibitors L-NAME (1 mM) and L-NNA (800 ${\mu}$M) prevented the Pb$^{2+}$-induced increase in NO production. Western blot analysis showed that pre-treatment of Pb$^{2+}$ augmented LPS/IFN$_{\gamma}$-induced increase in iNOS immunoreactivity, which was well correlated with the increased NO production. In addition, pre-treatment of Pb$^{2+}$ synergistically increased the iNOS mRNA expression induced by LPS and IFN${\gamma}$. The present results indicate that lead intoxication adversely affect brain function by potentiating iNOS expression and NO production in activated glial cells observed in various neurodegenerative diseases.

Keywords

References

  1. Beckman, J. S., Beckman, T. W, Chen, J., Marshall, P. A. and Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl' Acad. Sci. USA. 87, 1620-1624 https://doi.org/10.1073/pnas.87.4.1620
  2. Bellinger, D. and Dietrich, K. N. (1994). Low-level lead exposure and cognitive function in children. Pediatr. Ann. 23, 600-605 https://doi.org/10.3928/0090-4481-19941101-08
  3. Blazka, M. E., Harry, G. J. and Luster, M. I. (1994). Effect of lead acetate on nitrite production by murine brain endothelial cell cultures. Toxicol. Appl. Pharmacol. 126, 191-194 https://doi.org/10.1006/taap.1994.1107
  4. Bruhwyler, J., Chleide, E., Liegeois, J. F. and Carreer, F. (1993). Nitric oxide: a new messenger in the brain. Neurosci. Biobehav. Rev. 17, 373-384 https://doi.org/10.1016/S0149-7634(05)80114-9
  5. Choi, J-J. and Kim, W-K. (1998). Potentiated glucose deprivation-induced death of astrocytes after induction of iNOS. J. Neurosci. Res. 54, 870-875 https://doi.org/10.1002/(SICI)1097-4547(19981215)54:6<870::AID-JNR15>3.0.CO;2-3
  6. Colasanti, M., Persichini, T., Venturini, G., Polticelli, F. and Musci, G. (2000). Modulation of the nitric oxide pathway by copper in glial cells. Biochem Biophys Res Commun. 275, 776-782 https://doi.org/10.1006/bbrc.2000.3396
  7. Ding, Y., Gonick, H. C. and Vaziri, N. D. (2000). Lead promotes hydroxyl radical generation and lipid peroxidation in cultured aortic endothelial cells. Am. J. Hypertens. 13, 552-555 https://doi.org/10.1016/S0895-7061(99)00226-5
  8. Dringen, R., Kussmaul, L., Gutterer, J. M., Hirrlinger, J. and Hamprecht, B. (1999). The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells. J. Neurochem. 72, 2523-2530 https://doi.org/10.1046/j.1471-4159.1999.0722523.x
  9. Eckhardt, W., Bellmann, K. and Kolb, H. (1999). Regulation of inducible nitric oxide synthase expression in beta cells by environmental factors: heavy metals. Biochem. J. 338, 695-700 https://doi.org/10.1042/0264-6021:3380695
  10. Green, S. J., Mellouk, S., Hoffman, S. L., Meltzer, M. S. and Nacy, C.A. (1990). Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol. Lett. 25, 15-19 https://doi.org/10.1016/0165-2478(90)90083-3
  11. Hewett, S. J., Csemansky, C. A. and Choi, D. W. (1994). Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron 13, 487-494 https://doi.org/10.1016/0896-6273(94)90362-X
  12. Hewett, S. J., Muir, J. K., Lobner, D., Symons, A. and Choi, D. W. (1996). Potentiation of oxygen-glucose deprivation-induced neuronal death after induction of iNOS. Stroke 27, 1586-1591 https://doi.org/10.1161/01.STR.27.9.1586
  13. Jadhav, A. L., Ramesh, G. T. and Gunasekar, P. G. (2000). Contribution of protein kinase C and glutamate in Pb2$^2^+$induce cytotoxicity. Toxicol. Lett. 115, 89-98 https://doi.org/10.1016/S0378-4274(00)00177-6
  14. Ko, K. H. and Kim, W-K. (2000). Synergistic depletion of astrocytic glutathione by glucose deprivation and peroxynitrite: Correlation with mitochondrial dysfunction and subsequent cell death. J. Neurochem. 74, 1989-1998 https://doi.org/10.1046/j.1471-4159.2000.0741989.x
  15. Kim, W-K., Chung, J. H., Kim, H. C. and Ko, K. H. (1999). Nitric oxide-enhanced excitotoxicity-independent apoptosis of glucose-deprived neurons. Neurosci. Res. 33, 281-289 https://doi.org/10.1016/S0168-0102(99)00018-8
  16. Kim, W-K. and Ko, K. H. (1998). Potentiation of N-methyl-Daspartate- mediated neurotoxicity by immunostimulated murine microglia. J. Neurosci. Res. 54, 17-26 https://doi.org/10.1002/(SICI)1097-4547(19981001)54:1<17::AID-JNR3>3.0.CO;2-K
  17. Kim, W-K., Seo, D.O., Choi, J. J. and Ko, K. H. (1999). Immunostimulated glial cells potentiate glucose deprivation-induced death of cultured rat cerebellar granule cells. J. Neurotrauma 16,415-424 https://doi.org/10.1089/neu.1999.16.415
  18. Makar, T. K., Nedergaard, M., Preuss, A., Gelbard, A. S., Perumal, A. S. and Cooper, A.J. (1994). Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J. Neurochem. 62, 45-53 https://doi.org/10.1046/j.1471-4159.1994.62010045.x
  19. McMichael, A. J., Baghurst, P. A., Wigg, N. R, Vimpani, G. V., Robertson, E. F. and Roberts, R J. (1988). Port Pirie Cohort Study; environmental exposure to lead and children's abilities at the age of four years. N. Engl. J. Med. 319, 468-475 https://doi.org/10.1056/NEJM198808253190803
  20. Mushak, P., Davis, J. M., Crocetti, A. F. and Grant, L. D. (1989). Prenatal and postnatal effects of low-level lead exposure: integrated summary of a report to the U.S. Congress on childhood lead poisoning. Environ. Res. 50, 11-36 https://doi.org/10.1016/S0013-9351(89)80046-5
  21. Nakashima, M. N., Yamashita, K., Kataoka, Y., Yamashita, Y. S. and Niwa, M. (1995). Time course of nitric oxide synthase activity in neuronal, glial, and endothelial cells of rat striatum following focal cerebral ischemia. Cell. Mol. Neurobiol. 15, 341-349 https://doi.org/10.1007/BF02089944
  22. Needleman, H. L., Schell, A., Bellinger, D., Leviton, A. and Allred, E. N. (1990). The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. N. Engl. J. Med. 322, 83-88 https://doi.org/10.1056/NEJM199001113220203
  23. Petit, T. L. (1986). Developmental effects of lead: its mechanism in intellectual functioning and neural plasticity. Neurotoxicology 7, 483-495
  24. Possel, H., Noack, H., Augustin, W., Keilhoff, G. and Wolf, G. (1997). 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett. 416, 175-178 https://doi.org/10.1016/S0014-5793(97)01197-6
  25. Raps, S. P., Lai, J. C., Hertz, L. and Cooper, A. J. (1989). Glu tathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res. 493, 398-401 https://doi.org/10.1016/0006-8993(89)91178-5
  26. Shrikant, P., Lee, S. J., Kalvakolanu, J., Ransohoff, R. M. and Benveniste, E. N. (1996). Stimulus-specific inhibition of intracellular adhesion molecule-1 gene expression by TGF-beta. J. Immunol. 157,892-900
  27. Tian, L. and Lawrence, D. A. (1995). Lead inhibits nitric oxide production in vitro by murine splenic macrophages. Toxicol. Appl. Pharmacol. 132, 156-163 https://doi.org/10.1006/taap.1995.1096
  28. Tian, L. and Lawrence, D. A. (1996). Metal-induced modulation of nitric oxide production in vitro by murine macrophages: lead, nickel, and cobalt utilize different mechanisms. Toxicol. Appl. Pharmacol. 141,540-547 https://doi.org/10.1006/taap.1996.0320
  29. Tiffany-Castiglioni, E. (1993). Cell culture models for lead toxicity in neuronal and glial cells. Neurotoxicology 14, 513-536
  30. Towbin, H., Staehelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350-4354 https://doi.org/10.1073/pnas.76.9.4350