References
- Lee MH, Park YH. Isoflavone content in soybean and its processed products. Korean J. Food Sci. Technol. 34: 365-369 (2002)
- Turner NJ, Thomson BM, Shaw IC. Bioactive isoflavones in functional foods: the importance of gut microflora on bioavailability. Nutr. Rev. 61: 204-213 (2003) https://doi.org/10.1301/nr.2003.jun.204-213
- Dixon RA, Ferreira D. Genistein. Phytochemistry 60: 205-211 (2002) https://doi.org/10.1016/S0031-9422(02)00116-4
- Kim CS, Ha HK, Kim HJ, Lee JH, Song KY. Pueraria lobata ohwi as an osteoporosis therapeutics. Korean J. Food Sci. Technol. 34: 710-718(2002)
- Krishnan HB. Identification of genistin, an anticarcinogenic compound, in the edible tubers of the American groundnut (Apios americana Medikus). Crop Sci. 38: 1052-1056 (1998) https://doi.org/10.2135/cropsci1998.0011183X003800040028x
- Jun M, Fu HY, Hong J, Wan X, Yang CS, Ho CT. Comparison of antioxidant activities of isoflavones from Kudzu root (Pueraria lobata Ohwi). J. Food Sci. 68: 2117-2122 (2003) https://doi.org/10.1111/j.1365-2621.2003.tb07029.x
- Boue SM, Wiese TE, Nehls S, Burow ME, Elliott S, Carter- Wientjes CH, Shih BY, McLachlan JA, Cleveland TE. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J. Agric. Food Chem. 51: 2193-2199 (2003) https://doi.org/10.1021/jf021114s
-
Coward L, Barnes NC, Setchell KDR, Barnes S. Genistein, Daidzein, and their
$\beta$ -glucoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 41: 1961-1967(1993) https://doi.org/10.1021/jf00035a027 - Wei HC, Wei LH, Frenkel K, Bowen R, Barnes S. Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr. Cancer 20: 1-12 (1993) https://doi.org/10.1080/01635589309514265
- Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER. Induction of Bradirhizobium Japonicum common nod genes by isoflavones isolated from Glycine max. Proc. Natl. Acad. Sci. 84: 7428-7432 (1987) https://doi.org/10.1073/pnas.84.21.7428
- Morris PF, Savard ME, Ward EWB. Identification and accumulation of isoflavone glucosides in soybean leaves and hypocotyls in resistance responses to Phytophtora megasperma f. sp. glycinea. Physiol. Molecular Plant Pathol. 30: 229-244(1991)
- Wang H, Murphy PA. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 42: 1666-1673 (1994) https://doi.org/10.1021/jf00044a016
- Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699 (2000) https://doi.org/10.1093/jn/130.7.1695
- Setchell KDR. Absorption and metabolism of soy isoflavonesfrom food to dietary supplements and adults to infants. J. Nutr. 130: 654S-655S (2000) https://doi.org/10.1093/jn/130.3.654S
- Lee SJ, Ahn JK, Kim SH, Kim JT, Han SJ, Jung MY, Chung IM. Variation in isoflavone of soybean cultivars with location and storage duration. J. Agric. Food Chem. 51: 3382-3389 (2003) https://doi.org/10.1021/jf0261405
- Prasain JK, Jones K, Kirk M, Wilson L, Smith-Johnson M, Weaver C, Barnes S. Profiling and quantification of isoflavonoids in Kudzu dietary supplements by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 51: 4213-4218 (2003) https://doi.org/10.1021/jf030174a
- Vetter J. Isoflavones in different parts of common Trifolium species. J. Agric. Food Chem. 43: 106-108 (1995) https://doi.org/10.1021/jf00049a020
- Wang H, Murphy PA. Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year, and location. J. Agric. Food Chem. 42: 1674-1677 (1994) https://doi.org/10.1021/jf00044a017
- Kim YH, Kim SR. Isoflavone content in Korean soybean cultivars. Soonchunyang J. Nat. Sci. 3: 331-337 (1997)
- Kim HY, Hong JH, Kim DS, Kang KJ, Han SB, Lee, EJ, Chung HW, Song KH, Sho KA, Kwack SJ, Kim SS, Park KL, Lee SK, Kim MC, Kim CM, Song IS. Isoflavone content and estrogen activity in arrowroot Puerariae radix. Food Sci. Biotechnol. 12: 29-35(2003)
- Wu Q, Wang M, Simon JE. Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J. Chromatogr. A. 1016: 195-209 (2003) https://doi.org/10.1016/j.chroma.2003.08.001
- Barnes S, Coward L, Kirk M, Sfakianos J. HPLC-mass spectrometry analysis of isoflavones. Proc. Soc. Exp. Biol. Med. 217: 254-262 1998 https://doi.org/10.3181/00379727-217-44230
- Aussenac T, Lacombe S, Dayde J. Quantification of isoflavones by capillary zone electrophoresis in soybean seeds: effects of variety and environment. Am. J. Clin. Nutr. 68: 1480S-1485S (1998) https://doi.org/10.1093/ajcn/68.6.1480S
- Robyt JF, Mukerjeab R. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202 (1994) https://doi.org/10.1016/0008-6215(94)84285-X
- Choi MH, Cho KS, Kang Hk, Yun JS, Seo ES, Ryu HW, Chang SH, Yoon SH, Kim DM. Simple and quantitative analysis method for lactic acid by TLC. Korean J. Biotechnol. Bioeng. 18: 70-73 (2003)
- Dan Li, Park JH, Park JT, Park CE, Park KH. Biotechnological production of highly soluble daidzein glycosides using Thermotoga maritima altosyltransferase. J. Agric. Food Chem. 52: 2561-2567 (2004) https://doi.org/10.1021/jf035109f
- Franke AA, Custer LJ, Cerna CM, Narala K. Quantitation of phytoestrogens in legumes by HPLC. J. Agric. Food Chem. 42: 1905-1913(1994) https://doi.org/10.1021/jf00045a015