Rapid Quantitative Analysis of Isoflavones using TLC

TLC를 이용한 이소플라본의 신속한 정량 분석

  • Kim, Kyung-Seon (Department of Food Science and Biotechnology, KyungHee University) ;
  • Park, Kwan-Hwa (Department of Food Science and Technology, Seoul National University) ;
  • Baik, Moo-Yeol (Department of Food Science and Biotechnology, KyungHee University) ;
  • Kang, Kil-Jin (Containers and Packaging Division, Korea Food and Drug Administration) ;
  • Park, Cheon-Seok (Department of Food Science and Biotechnology, KyungHee University)
  • 김경선 (경희대학교 생명과학대학 식품공학전공) ;
  • 박관화 (서울대학교 농생명과학대학 식품공학과) ;
  • 백무열 (경희대학교 생명과학대학 식품공학전공) ;
  • 강길진 (식품의약품안전청 용기포장과) ;
  • 박천석 (경희대학교 생명과학대학 식품공학전공)
  • Published : 2004.08.31

Abstract

Conditions for rapid quantification of isoflavones were studied. Rapid and clear separation of isoflavones (genistin and daidzin) was obtained using solvent system of chloroform : methanol : water : acetic acid (60 : 30 : 10 : 0.5, v/v/v/v). Quantification of each isoflavone separated by TLC was conducted by densitometry analysis. Genistin and daidzin were quantified in $0.15-1.80\;{\mu}g/{\mu}L$ range with 99% confidence. Concentrations of isoflavones in soybeans and kudzu roots originated from Korea were determined, and validity of TLC method for quantification of isoflavones was confirmed by comparison with HPLC analysis.

TLC를 이용하여 간편하고 신속하게 정량적인 이소플라본의 분석을 수행할 수 있는 조건을 개발하였다. 전개 용매로는 chloroform : methanol : water : acetic acid를 각각 60 : 30 : 10 : 0.5의 비율로 하였을 때 최적의 분리를 보였으며, 정량적인 분석은 UV에서의 흡광도를 densitometer를 사용하여 spot의 intensity를 계산함으로 가능하였다. HPLC분석법과의 비교 결과 $0.15-1.80{\mu}g/{\mu}L$의 범위에서 이소플라본을 정량적으로 분석할 수가 있었다. 또한 TLC를 이용하여 일반 콩과 식물에 포함되어 있는 이소플라본의 함량 측정 결과 HPLC의 결과와 상당히 근소한 값으로 일치하여 TLC방법으로 간편하고 빠르게 정량적인 측정이 가능함을 확인하였다.

Keywords

References

  1. Lee MH, Park YH. Isoflavone content in soybean and its processed products. Korean J. Food Sci. Technol. 34: 365-369 (2002)
  2. Turner NJ, Thomson BM, Shaw IC. Bioactive isoflavones in functional foods: the importance of gut microflora on bioavailability. Nutr. Rev. 61: 204-213 (2003) https://doi.org/10.1301/nr.2003.jun.204-213
  3. Dixon RA, Ferreira D. Genistein. Phytochemistry 60: 205-211 (2002) https://doi.org/10.1016/S0031-9422(02)00116-4
  4. Kim CS, Ha HK, Kim HJ, Lee JH, Song KY. Pueraria lobata ohwi as an osteoporosis therapeutics. Korean J. Food Sci. Technol. 34: 710-718(2002)
  5. Krishnan HB. Identification of genistin, an anticarcinogenic compound, in the edible tubers of the American groundnut (Apios americana Medikus). Crop Sci. 38: 1052-1056 (1998) https://doi.org/10.2135/cropsci1998.0011183X003800040028x
  6. Jun M, Fu HY, Hong J, Wan X, Yang CS, Ho CT. Comparison of antioxidant activities of isoflavones from Kudzu root (Pueraria lobata Ohwi). J. Food Sci. 68: 2117-2122 (2003) https://doi.org/10.1111/j.1365-2621.2003.tb07029.x
  7. Boue SM, Wiese TE, Nehls S, Burow ME, Elliott S, Carter- Wientjes CH, Shih BY, McLachlan JA, Cleveland TE. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J. Agric. Food Chem. 51: 2193-2199 (2003) https://doi.org/10.1021/jf021114s
  8. Coward L, Barnes NC, Setchell KDR, Barnes S. Genistein, Daidzein, and their $\beta$-glucoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 41: 1961-1967(1993) https://doi.org/10.1021/jf00035a027
  9. Wei HC, Wei LH, Frenkel K, Bowen R, Barnes S. Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr. Cancer 20: 1-12 (1993) https://doi.org/10.1080/01635589309514265
  10. Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER. Induction of Bradirhizobium Japonicum common nod genes by isoflavones isolated from Glycine max. Proc. Natl. Acad. Sci. 84: 7428-7432 (1987) https://doi.org/10.1073/pnas.84.21.7428
  11. Morris PF, Savard ME, Ward EWB. Identification and accumulation of isoflavone glucosides in soybean leaves and hypocotyls in resistance responses to Phytophtora megasperma f. sp. glycinea. Physiol. Molecular Plant Pathol. 30: 229-244(1991)
  12. Wang H, Murphy PA. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 42: 1666-1673 (1994) https://doi.org/10.1021/jf00044a016
  13. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699 (2000) https://doi.org/10.1093/jn/130.7.1695
  14. Setchell KDR. Absorption and metabolism of soy isoflavonesfrom food to dietary supplements and adults to infants. J. Nutr. 130: 654S-655S (2000) https://doi.org/10.1093/jn/130.3.654S
  15. Lee SJ, Ahn JK, Kim SH, Kim JT, Han SJ, Jung MY, Chung IM. Variation in isoflavone of soybean cultivars with location and storage duration. J. Agric. Food Chem. 51: 3382-3389 (2003) https://doi.org/10.1021/jf0261405
  16. Prasain JK, Jones K, Kirk M, Wilson L, Smith-Johnson M, Weaver C, Barnes S. Profiling and quantification of isoflavonoids in Kudzu dietary supplements by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 51: 4213-4218 (2003) https://doi.org/10.1021/jf030174a
  17. Vetter J. Isoflavones in different parts of common Trifolium species. J. Agric. Food Chem. 43: 106-108 (1995) https://doi.org/10.1021/jf00049a020
  18. Wang H, Murphy PA. Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year, and location. J. Agric. Food Chem. 42: 1674-1677 (1994) https://doi.org/10.1021/jf00044a017
  19. Kim YH, Kim SR. Isoflavone content in Korean soybean cultivars. Soonchunyang J. Nat. Sci. 3: 331-337 (1997)
  20. Kim HY, Hong JH, Kim DS, Kang KJ, Han SB, Lee, EJ, Chung HW, Song KH, Sho KA, Kwack SJ, Kim SS, Park KL, Lee SK, Kim MC, Kim CM, Song IS. Isoflavone content and estrogen activity in arrowroot Puerariae radix. Food Sci. Biotechnol. 12: 29-35(2003)
  21. Wu Q, Wang M, Simon JE. Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J. Chromatogr. A. 1016: 195-209 (2003) https://doi.org/10.1016/j.chroma.2003.08.001
  22. Barnes S, Coward L, Kirk M, Sfakianos J. HPLC-mass spectrometry analysis of isoflavones. Proc. Soc. Exp. Biol. Med. 217: 254-262 1998 https://doi.org/10.3181/00379727-217-44230
  23. Aussenac T, Lacombe S, Dayde J. Quantification of isoflavones by capillary zone electrophoresis in soybean seeds: effects of variety and environment. Am. J. Clin. Nutr. 68: 1480S-1485S (1998) https://doi.org/10.1093/ajcn/68.6.1480S
  24. Robyt JF, Mukerjeab R. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202 (1994) https://doi.org/10.1016/0008-6215(94)84285-X
  25. Choi MH, Cho KS, Kang Hk, Yun JS, Seo ES, Ryu HW, Chang SH, Yoon SH, Kim DM. Simple and quantitative analysis method for lactic acid by TLC. Korean J. Biotechnol. Bioeng. 18: 70-73 (2003)
  26. Dan Li, Park JH, Park JT, Park CE, Park KH. Biotechnological production of highly soluble daidzein glycosides using Thermotoga maritima altosyltransferase. J. Agric. Food Chem. 52: 2561-2567 (2004) https://doi.org/10.1021/jf035109f
  27. Franke AA, Custer LJ, Cerna CM, Narala K. Quantitation of phytoestrogens in legumes by HPLC. J. Agric. Food Chem. 42: 1905-1913(1994) https://doi.org/10.1021/jf00045a015