Isolation, Identification and Optimal Culture Condition of Bacillus sp. FF-9 Having Antifungal on the Turf Grass Pathogens Caused by Rhizoctonia solani AGII-II

Rhizoctonia solani AGII-II에 대한 항진균 활성을 가지는 Bacillus sp. FF-9의 분리.동정 및 최적 배양조건

  • Park, Jin-Chul (Department of Biotechnology, Faculty of Applied Bioscience, Dong-A University) ;
  • Yoo, Ji-Hyun (Department of Biotechnology, Faculty of Applied Bioscience, Dong-A University) ;
  • Cha, Jae-Young (Department of Biotechnology, Faculty of Applied Bioscience, Dong-A University) ;
  • Kim, Min-Seok (Department of Biotechnology, Faculty of Applied Bioscience, Dong-A University) ;
  • Cho, Young-Su (Department of Biotechnology, Faculty of Applied Bioscience, Dong-A University)
  • 박진철 (동아대학교 응용생명공학부 생명공학과) ;
  • 유지현 (동아대학교 응용생명공학부 생명공학과) ;
  • 차재영 (동아대학교 응용생명공학부 생명공학과) ;
  • 김민석 (동아대학교 응용생명공학부 생명공학과) ;
  • 조영수 (동아대학교 응용생명공학부 생명공학과)
  • Published : 2004.12.31

Abstract

In this study, established soil-borne Bacillus sp. FF-9 with strong antifungal activity was isolated for identification and to determine optimal culture condition. By using 16s rDNA sequencing method, FF-9 of the selected bacteria was identified as genus Bacillus sp., Bacillus sp. FF-9 was cultured at $30^{\circ}C$, for 24 h in the LB medium. Cell growth increased quickly after 6 h and the highest cell growth was indicated at 12 h. The most antifungal activity against Rhizoctoina solani AGII-II appeared at 18 h and the optimal temperature and pH were 30 and pH 8.0, respectively. A testing of carbon and nitrogen sources showed the highest antifungal activity at 1% lactose and 1% yeast extract Furthermore an addition of salt showed the most antibiotic activity in the 0.15% $K_2HPO_4$.

잔디병 유발균 Rhizoctonia solani AGII-II에 대한 강한 항진균 활성을 가지는 균주를 토양에서 분리 동정하고 최적 배양조건을 확립하였다. 분리된 균주를 165 rDNA sequence로 동정한 결과 Bacillus sp.로 Bacillus sp. FF-9로 명명하였다. Bacillus sp. FF-9 균체의 생육은 LB배지를 사용하여 $30^{\circ}C$에서 24시간 진탕배양한 결과 6시간 이후부터 급격히 증가하여 12시간째 가장 높은 생육을 나타내었다. 피검균인 Rhizoctonia solani AGII-II에 대한 최대 항진균 활성은 18시간째에 나타났으며, 최적 온도는 $30^{\circ}C$, 최적 pH는 8.0에서 가장 높은 항진균 활성을 나타내었다. 탄소원과 질소원 실험에서는 1% lactose와 1% yeast extract에서 높은 항진균 활성을 나타내었고, 미량원소 첨가에 따른 항진균 활성은 0.15% $K_2HPO_4$에서 가장 높은 항진균 활성을 나타내었다.

Keywords

References

  1. Suzui, T. (1992) In New Biopesticides. pp. 55-76
  2. Leong, J. (1986) Siderophores, their biochemistry and possible role in biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24, 187-209 https://doi.org/10.1146/annurev.py.24.090186.001155
  3. Baker, R. (1968) Mechanisms of biological control of soilborne plant pathogens. Annu. Rev. Phytopathol. 6, 263-294 https://doi.org/10.1146/annurev.py.06.090168.001403
  4. Kim, S. S., Joo, G. J., Uhm, J. Y., Kim, Y. J. and Rhee, I. K. (1997) Antifungal activity of Bacillus sp. SS279 and biocontrol of apple white rot fungus, Botryosphaeria dothidea. Kor. J. Appl. Microbiol. Biotechnol. 25, 527-536
  5. Lee, Y. S., Choi, J. W., Kim, S. D. and Baik, H. S. (1999) Isolation of antagonistic bacteria to Phytophthora capsici for biological control of Phytophthora blight of red pepper. Kor. J. Life Science 9, 1-7
  6. Freeman, S., Katan, T. and Shabi, E. (1996) Characterization of Colletotrichum eloeosporioides isolates from avocado and almond fruits with molecular and pathogenicity tests. Appl. Environ. Microbiol. 62, 1014-1020
  7. So, I. Y. and Kim, H. M. (1980) On the occurrence and control of the rhizome rot of the common ginger caused by Fusarium oxysporum f. zingiberi. Kor. J. Micribiol. 18, 172-179
  8. Joo, Y. K. and Han, J. H. (1994) Antagonism of Pseudomonas spp. against to Rhizoctonia solani and Pythium spp. Kor. Turfgrass Sci. 8, 47-52
  9. Joo, G. J., Lee, I. H. and Kim, J. H. (2002) Chitinase production and isolation of Serratia pIymuthica AL-l antagonistic to white rot fungi from Allium fistulosum roots. Kor. J. Microbiol. Biotechnol. 30, 135-141
  10. Yun, G. H., Lee, E. T. and Kim, S. D. (2001) Identification and antifungal antagonism of Chryseomonas luteola 5042 against Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 29, 186-193
  11. Zink, R. T., Kemble, R. J. and Chatterjee, A, K. (1984) Transposon Tn5 mutagenesis in Erwinia subsp. carotovora and E. carotovora subsp. atroseprica. J. Bacteriol. 157, 809-814
  12. Lockwood, J. L. (1988) Evolution of concepts associated with soilborne plant pathogens. Annu. Rev. Phytopathol. 26, 93-121 https://doi.org/10.1146/annurev.py.26.090188.000521
  13. Lee, J. H. and Lee, E. Y. (2003) Screening of potent biofungicide for the growth inhibition of soilborne pathogenic fungi, Rhizotonia solani. Kor. J. Life Science 13, 355-358
  14. Kim, K. Y. and Kim, S. D. (1997) Biological control of Pyricularia oryzae blast spot with the antibiotic substances produced by Bacillus sp. KL-3. Kor. J. Appl. Microbiol. Biolechnol. 25, 396-402
  15. Bapat, S. and Shah, A. K. (2000) Biological control of fusarial wilt of pigeon pea by Bacillus brevis. Can. J. Microbiol. 46, 125-132 https://doi.org/10.1139/cjm-46-2-125
  16. Silo-Suh, A. L., Benjamin, J. L., Sandra, J. R., Haiyin, H., Jon, C. and Handelsman, J. (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60, 2023-2030
  17. Sharga, B. M. (1997) Bacillus isolated as potential biocontrol agents against chocolate spot on faba beans. Can. J. Microbiol. 43, 915-924 https://doi.org/10.1139/m97-132
  18. Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D., Epton, H. A. S. and Harbour, A. (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Can. J. Microbiol. 41, 247-252 https://doi.org/10.1139/m95-034
  19. Lee, J. P. and Moon, B. J. (2001) Cultural characteristics of antagonistic bacterium, Bacillus licheniformis Nl against Botrylis cinerea. Kor. J. Life Science 11, 173-180
  20. Chet, I. and Baker, R. (1981) Isolation and biocontrol potential of Trichoderma Hamatum from soil naturally suppressive of Rhizoctonia solani. Phytopathology 71, 286-290 https://doi.org/10.1094/Phyto-71-286
  21. Elad, Y., Chet, I., Boyle, P. and Henis, Y. (1983) Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii. Scanning electron microscopy and fluorescence microscopy. Phytopthology 73, 85-88 https://doi.org/10.1094/Phyto-73-85
  22. APHA, AWWA, WEF. (1992) In standard methods for the examination of water and wastewater (18th ed.) Washington D.C.
  23. Lee, Y. S., Yoo, J. S., Chung, S. Y., Park, C. S. and Choi, Y. L. (2003) Microbial immobilization, characterization and isolation of nitrogen oxidizing bacteria. J. Korean Soc. Agric. Chem. Biotechnol. 46, 7-11
  24. Kavanagh, F. (1975) Antibiotic assays. Method Enzymol. 43, 53-76
  25. Kim, S. I., Kim, I. C. and Chang, H. C. (1999) Isolation and identification of antimicrobial agent producing microorganism and sensitive strain from soil, J. Korean Soc. Food Sci. Nutr. 28, 526-533
  26. Zuber, P., Nakano, M. M. and Marahiel, M. A. (1993) In Peptide antibiotics. Abraham, L. Sonenshein, J. A., Hoch, R. L. (eds.), American Society Microbiology, pp. 897-916
  27. Jung, H. K. and Kim, S. D. (2003) Purification and characterization of an antifungal antibiotic from Bacillus megaterium KL39, a biocontrol agent of red-pepper phytophtora blight disease. Kor. J. Microbiol. Biotechnol. 31, 235-241
  28. Joo, G. J. and Kim, J. H. (2002) Otimization of large scale culture conditions of Bacillus ehimensis YJ-37 antagonistic to vegetables damping-off fungi. Kor. J. Life Science 12, 242-249 https://doi.org/10.5352/JLS.2002.12.3.242
  29. Kim, Y. S. (1992) Biocontrol bacteria, Bacillus subtilis YB-70 producing the antifungal antibiotics and genetic improvement, MS Thesis, Yeungnam University, Korea