Thermodynamic Properties of Ubiquitin Folding Intermediate

Ubiquitin 폴딩 intermediate의 열역학적 특성

  • Park, Soon-Ho (Department of Dentistry, college of Dentistry, Kangnung National University)
  • 박순호 (강릉대학교 치과대학 치의학과)
  • Published : 2004.03.31

Abstract

Thermodynamic properties of ubiquitin transient folding intermediate were studied by measuring folding kinetics in varying temperatures and denaturant concentrations. Through quantitative kinetic modeling, the equilibrium constant, hence folding free energy, between unfolded state and intermediate state in several different temperatures were calculated. Using these values, the thermodynamic parameters were estimated. The heat capacity change $({\Delta}C_p)$ upon formation of folding intermediate from unfolded state were estimated to be around 80% of the overall folding reaction, indicating that ubiquitin folding intermediate is highly compact. At room temperature, the changes of enthalpy and entropy upon formation of the intermediate state were observed to be positive. The positive enthalpy change suggests that the breaking up of the highly ordered solvent structure surrounding hydrophobic side-chain upon formation of intermediate state. This positive enthalpy was compensated for by the positive entropy change of whole system so that formation of transient intermediate has negative free energy.

Ubiquitin 폴딩 반응의 초기에 나타나는 transient 폴딩 intermediate 상태의 열역학적인 특성을 연구하였다. 온도와 화학변성제의 농도를 바꾸어주면서 측정한 폴딩 kinetics의 결과로부터 unfolded 상태와 intermediate 상태의 평형상수 및 자유에너지를 quantitative kinetic modeling을 통하여서 구하였으며 또한 온도에 따른 자유에너지의 변화로부터 unfolded 상태에서 intermediate 상태로 전환될 때의 열역학적 함수인 ${\Delta}H,\;{\Delta}S,\;{\Delta}C_p$를 구하였다. Ubiquitin이 unfolded 상태에서 intermediate 상태가 될 때의 ${\Delta}C_p$는 unfolded 상태에서 native 상태로 되는 과정의 ${\Delta}C_p$의 약 80% 정도 되었다. 이것은 intermediate가 native 상태에 가까운 매우 조밀한 구조를 이루고 있는 ensemble state임을 나타낸다. 상온에서의 ${\Delta}H$는 양의 값을 보였다. 이는 ubiquitin의 unfolded 상태에서 소수성 잔기 주위에 위치한 물 분자의 규칙적인 구조가 intermediate 상태가 될 때 와해되기 때문이라고 여겨진다. 이러한 양의 enthalpy는 자유로워진 물 분자에 의한 전체 계의 entropy의 증가에 의하여서 보상되어 unfolded 상태에서intermediate 상태로의 전환은 음의 자유에너지를 갖게 되며 폴딩 반응의 초기에 관찰되는 것으로 여겨진다.

Keywords

References

  1. Anfinsen, C. B. (1973) Principles that govern the folding of protein chains. Science 181, 223-229 https://doi.org/10.1126/science.181.4096.223
  2. Levinthal, C. (1968) Are there pathways for protein folding? J. Chim. Phys. 85, 44-45
  3. Zwanzig, R., Szabo, A. and Bagchi, B. (1992) Lenvinthal's paradox. Proc. Nall. Acad. Sci. USA 89, 20-22 https://doi.org/10.1073/pnas.89.1.20
  4. Elove, G. A., Chaffotte, A. R, Roder, H. and Goldberg, M. E. (1992) Early steps in cytbchrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry 31, 6876-6883 https://doi.org/10.1021/bi00145a003
  5. Khorasanizadeh, S., Peters, I. D. and Roder, H. (1996) Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat. Struct. Biol. 3, 193-205 https://doi.org/10.1038/nsb0296-193
  6. Sauder, J. M., MacKenzie, N. E. and Roder, H. (1996) Kinetic mechanism of folding and unfolding of Rhodobacter capsulatus cytochrome $C_2$. Biochemistry 35, 16852-16862 https://doi.org/10.1021/bi961976k
  7. Park, S.-H., O'Neil, K. T. and Roder, H. (1997) An early intermediate in the folding reaction of the Bl domain of protein G contains a native-like core. Biochemistry 36, 14277-14283 https://doi.org/10.1021/bi971914+
  8. Raschke, T. M. and Marqusee, S. (1997) The kinetic folding intermediate of ribonuclease H resembles the acid molten globule and partially unfolded molecules detected under native conditions. Nat. Struct. Biol. 4, 298-304 https://doi.org/10.1038/nsb0497-298
  9. Kern, G., Handel, T. and Marqusee, S. (1998) Characterization of a folding intermediate from HIV-l ribonuclease H. Protein Sci. 7, 2164-2174 https://doi.org/10.1002/pro.5560071014
  10. Kuwata, K.. Shastry, R., Cheng, H., Hoshino, M., Batt, C. A., Goto, Y. and Roder, H. (2001) Structural and kinetic characterization of early folding events in beta-lactoglobulin. Nat. Struct. Biol. 8, 151-155 https://doi.org/10.1038/84145
  11. Capa1di, A. R, Shastry, M. C., Kleanthous, C., Roder, H. and Radford, S. E. (2001) Ultrarapid mixing experiments reveal that Im7 folds via an on-pathway intermediate. Nat. Struct. Biol 8, 68-72 https://doi.org/10.1038/83074
  12. Baldwin, R. L. (1996) On-pathway versus off-pathway folding intermediates, folding Des. 1, R1-R8 https://doi.org/10.1016/S1359-0278(96)00003-X
  13. Khorasanizadeh, S., Peters, I. D., Butt, T. R. and Roder, H. (1993) Stability and folding of a tryptophan-containing mutant of ubiquitin. Biochemistry 32, 7054-7063 https://doi.org/10.1021/bi00078a034
  14. Peterman, B. F. (1979) Measurement of the dead time of a fluorescence stopped-flow instrument. Anal. Biochem. 93, 442-444 https://doi.org/10.1016/S0003-2697(79)80176-1
  15. Briggs, M. S. and Roder, H. (1992) Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc. Natl. Acad. Sci. USA 89, 2017-2021 https://doi.org/10.1073/pnas.89.6.2017
  16. Tanford, C. (1970) Protein denaturation. Part C. Theoretical models for the mechanism of denaturation. Adv. Protein Chem. 24, 1-95 https://doi.org/10.1016/S0065-3233(08)60241-7
  17. Berberan-Santos, M. N. and Mardnho, J. M. G. (1990) The integration of kinetic rate equations by matrix methods. J. Chem. Edu. 67, 375-379 https://doi.org/10.1021/ed067p375
  18. Pogliani, L. and Terenzi, M. (1992) Matrix formulation of chemical reacdon rates. J. Chem. Edu. 69, 278-280 https://doi.org/10.1021/ed069p278
  19. Pace, C. N. (1975) The stability of globular proteins. CRC Crit. Rev. Biochem. 2, 1-43
  20. Myers, J. K., Pace, C. N. and Scholtz, J. M. (1995) Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138-2148 https://doi.org/10.1002/pro.5560041020
  21. Schindler, T. and Schmid, F. X. (1996) Thermodynamic properties of an extremely rapid protein folding reaction. Biochemistry 35, 16833-16842 https://doi.org/10.1021/bi962090j
  22. Becktel, W. J. and Schellman, J. A. (1987) Protein stability curves. Biopolymers 26, 1859-1877 https://doi.org/10.1002/bip.360261104
  23. Schellman, J. A. (1987) The thermodynamic stability of proteins. Ann. Rev. Biophys. Biophys. Chem. 16, 115-137 https://doi.org/10.1146/annurev.bb.16.060187.000555
  24. Privalov, P. L. and Khechinashvili, N. N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: a caloiimetric study. J. Mol. Biol. 86, 665-684 https://doi.org/10.1016/0022-2836(74)90188-0
  25. Wintrode, P. L., Makhatadze, G. I. and Pnvalov, P. L. (1994) Thermodynamics of ubiquitin unfolding, Proteins Struct. Funct. Genet. 18, 246-253
  26. Chen, B., Baase, W. A. and Schellman, J. A. (1989) Low-temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry 28, 691-699 https://doi.org/10.1021/bi00428a042
  27. Jackson, S. E. and Fersht, A. R. (1991) Folding of chymotrypsin inhibitor 2. 2. Influence of proline isomenzation on the folding kinetics and thermodynamic characterization of the transition state of folding. Biochemistry 30, 10436-10443 https://doi.org/10.1021/bi00107a011
  28. Ptitsyn, O. B. (1995) Molten globule and protein folding. Adv. Protein Chem. 47, 83-229 https://doi.org/10.1016/S0065-3233(08)60546-X