DOI QR코드

DOI QR Code

SERS Analysis of CMC on Gold-Assembled Micelle

  • Jang, Nak-Han (Institute of Science Education, Kongju National University)
  • Published : 2004.09.20

Abstract

The micellization of dodecylpyridinum chloride (DPC) assembled on aqueous gold nanoparticles has been studied as a function of concentration using Surface-Enhanced Raman Scattering (SERS). At the low concentration, the strong SERS band of the benzene ring moiety was observed at 1025 $cm^{-1}$, and assigned to “trigonal ring breathing”. According to high concentration of DPC, a new strong band was also appeared at 1012 $cm^{-1}$, which was assigned to “totally symmetry ring breathing”. The difference of two spectra seems to ascribe to the geometry of polar head group, i.e., pyridinium cation. These geometry exist flat-down at low concentration, whereas standing-up or tilted geometry at high concentration. The critical micelle concentration (CMC) was first obtained from the ratio of intensities of the two bands related to the benzene ring moiety by vibrational spectroscopy, and was about 28 mM. After the CMC, the benzene ring moiety in the micelle state was more restricted than in monomer state because there is no more change of intensities at 1012 $cm^{-1}$. In addition, the size of gold-assembled micelle was estimated using light scattering and it was about 328.3 nm.

Keywords

References

  1. Koglin, E.; Sequaris, J. M.; Valenta, P. J. Mol. Struct. 1980, 60,421-425. https://doi.org/10.1016/0022-2860(80)80102-5
  2. Ervin, K. M.; Koglin, E.; Séquaris, J. M.; Valenta, P.;Nürnberg, H. W. J. Electroanal. Chem. 1980, 114, 179-194. https://doi.org/10.1016/S0022-0728(80)80446-3
  3. Creighton, J. A. Surf. Sci. 1985, 158, 211-221. https://doi.org/10.1016/0039-6028(85)90295-X
  4. Angebranndt, M. J.; Winefordner, J. D. Talanta 1992, 39, 569-572. https://doi.org/10.1016/0039-9140(92)80062-I
  5. Jordan, C. E.; Frutos, A. G.; Thiel, A. J.; Corn, R. M.Anal. Chem. 1997, 69, 4939-4947. https://doi.org/10.1021/ac9709763
  6. Angel, S. M.; Katz, L. F.;Archibald, D. D.; Honigs, D. E. Appl. Spectrosc. 1989, 43, 367-372. https://doi.org/10.1366/0003702894202940
  7. Pate, J.; Leiden, A.; Bozlee, B. J.; Garrell, R. L. J. RamanSpectrosc. 1991, 22, 477-480. https://doi.org/10.1002/jrs.1250220810
  8. Szafranski, C. A.; Tanner, W.;Laibinis, P. E.; Garrell, R. L. Langmuir 1998, 14, 3570-3579. https://doi.org/10.1021/la9702502
  9. Fleischmann, M.; Hendra, P. J.; McQuillan, A. Chem. Phys. Lett.1974, 26, 163-166. https://doi.org/10.1016/0009-2614(74)85388-1
  10. Jeanmarie, D. L.; Van Duyne, R. P. J. Electroanal. Chem. 1977,84, 1-20. https://doi.org/10.1016/S0022-0728(77)80224-6
  11. Regis, A.; Corset, J. Chem. Phys. Lett. 1980, 70, 305-308. https://doi.org/10.1016/0009-2614(80)85339-5
  12. Bunding, K. A.; Bell, M. I.; Durst, R. A. Chem. Phys. Lett. 1982,89, 54-58. https://doi.org/10.1016/0009-2614(82)83341-1
  13. Tnaford, C. The Hydrophobic Effect: Formation of Micellesand Biological Membranes, 2nd Ed.; John Wiley & Sons: NewYork, 1980.
  14. Fendler, J. H. Membrane-Mimetic Approach toAdvanced Materials; Springer-Verlag: Berlin, 1994.
  15. Voutsas, E. C.; Flores, M. V.; Spiliotis, N.; Bell, G.; Halling, P. J.;Tassios, D. P. Ind. Eng. Chem. Res. 2001, 40, 2362-2366. https://doi.org/10.1021/ie0009841
  16. Jang, N, H, M. Ed. Thesis, Seoul National University: Seoul,Korea, 1988.
  17. Chung, M. I.; Tak, I. J.; Lee, K. M. J. Korean Chem. Soc. 1975,19, 398-402.
  18. Youn, Y. W.; Lee, K. M. J. Korean Chem. Soc. 1975, 19, 289-293.
  19. Lee, K. M. J. Korean Chem. Soc. 1976, 20, 193-197.
  20. Lee, K. M. J. Korean Chem. Soc. 1973, 17, 73-79.
  21. Lee, Y. S.; Woo, K. W. Bull. Korean Chem. Soc. 1993, 14, 392-398.
  22. Lee, Y. S.; Woo, K. W. Bull. Korean Chem. Soc. 1993, 14,599-602.
  23. Lee, Y. S.; Woo, K. W. J. Colloid Interface Sci. 1995,169, 34-38. https://doi.org/10.1006/jcis.1995.1003
  24. Jang, N. H. Bull. Korean Chem. Soc. 2002, 23, 1790-1800. https://doi.org/10.5012/bkcs.2002.23.12.1790
  25. Varsanyi, G. Assignments for Vibrational Spectra of SevenHundred Benzene Derivatives; John Wiley & Sons: New York,1974, and reference therein.
  26. Lin-Vien, D.; Colthup, N. B.; Fately, W. G.; Grasselli, J. G. TheHandbook of Infrared and Raman Characteristic Frequencies ofOrganic Molecules; Academic Press: London, 1991, and referencetherein.
  27. Brolo, A. G.; Irish, D. E.; Lipkowski, J. J. Phys. Chem. B 1997,101, 3906-3909. https://doi.org/10.1021/jp970340f
  28. Simoncic, B.; Span, J. Acta Chim. Slov. 1998, 45, 143-152.

Cited by

  1. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals vol.131, pp.2, 2009, https://doi.org/10.1021/ja804115r
  2. Reactions of Organic Ions at Ambient Surfaces in a Solvent-Free Environment vol.23, pp.5, 2012, https://doi.org/10.1007/s13361-012-0337-7
  3. Metal-induced fluorescence lifetime enhancement of quinaldine chromophore on gold nanoparticle surface vol.37, pp.8, 2013, https://doi.org/10.1039/c3nj00287j
  4. Photochemical Kinetics of Maleic to Fumaric Acid on Silver Nanoparticle Surfaces vol.26, pp.5, 2004, https://doi.org/10.5012/bkcs.2005.26.5.791
  5. Self-Assembly of Gold Nanoparticles at the Liquid/Liquid Interface vol.26, pp.8, 2004, https://doi.org/10.5012/bkcs.2005.26.8.1306
  6. The Effect of pH-adjusted Gold Colloids on the Formation of Gold Clusters over APTMS-coated Silica Cores vol.27, pp.9, 2004, https://doi.org/10.5012/bkcs.2006.27.9.1341
  7. Extended gold nano-morphology diagram: synthesis of rhombic dodecahedra using CTAB and ascorbic acid vol.1, pp.41, 2013, https://doi.org/10.1039/c3tc31135j
  8. Surface‐enhanced Raman scattering as a tool to study cationic surfactants exhibiting low critical micelle concentration vol.51, pp.3, 2004, https://doi.org/10.1002/jrs.5798
  9. Vibrational spectroscopic analysis of critical micelle concentration in sodium decanoate solutions vol.250, pp.None, 2004, https://doi.org/10.1016/j.saa.2020.119387