References
- Turner, A. P. F.; Aston, W. J.; Higgins, I. J.; Davis, G.; Hill, H. A. O. Biotechnol. Bioeng. Symp. 1982, 12, 401.
- Videla, H. A.; Arvia, A. J. Biotechnol. Bioeng. 1975, 17, 1529. https://doi.org/10.1002/bit.260171011
- Wingard, L. B. Jr.; Shaw, C. H.; Castner, J. F. Enzyme Microb.Technol. 1982, 4, 137. https://doi.org/10.1016/0141-0229(82)90104-1
- Bennetto, H. P.; Stirling, J. L.; Tanaka, K.; Vega, C. A. Biotechnol.Bioeng. 1983, 25, 559. https://doi.org/10.1002/bit.260250219
- Bennetto, H. P.; Dew, M. E.; Striling, J. L.; Tanaka, K. Chem.Indust. 1981, 7, 776.
- Bennetto, H. P.; Stirling, J. L. Chem. Indust. 1985, 21, 695.
- Allen, R. M.; Bennetto, H. P. Appl. Biochem. Biotechnol. 1993,39, 27. https://doi.org/10.1007/BF02918975
- Delaney, G. M.; Bennetto, H. P.; Mason, J. R.; Roller, S. D.;Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984,34B, 13.
- Choi, Y.; Song, J.; Jung, S.; Kim, S. J. Microbiol. Biotechnol.2001, 11, 863.
- Tanaka, K.; Kashiwagi, N.; Ogawa, T. J. Chem. Tech. Biotechnol. 1988, 42, 235.
- Yagishita, T.; Horigome, T.; Tanaka, K. J. Chem. Tech. Biotechnol.1993, 56, 393.
- Kim, H. J.; Hyun, M. S.; Chang, I. S.; Kim, B. H. J. Microbiol.Biotechnol. 1999, 9, 365.
- Kim, N.; Choi, Y.; Jung, S.; Kim, S. Bull. Korean Chem. Soc.2000, 21, 44.
- Thurston, C. F.; Bennetto, H. P.; Delaney, G. M.; Mason, J. R.;Roller, S. D.; Stirling, J. L. J. Gen. Microbiol. 1985, 131, 1393.
- Fee, J. A.; Kuila, D.; Mather, M. W.; Yoshida, T. Biochimica etBiophysica Acta 1986, 853, 153. https://doi.org/10.1016/0304-4173(86)90009-1
- Haki, G. D.; Rakshit, S. K. Bioresource Technology 2003, 89, 17. https://doi.org/10.1016/S0960-8524(03)00033-6
- Choi, Y.; Kim, N.; Kim, S.; Jung, S. Bull. Korean Chem. Soc.2003, 24, 437. https://doi.org/10.5012/bkcs.2003.24.4.437
- Tangney, M.; Priest, F. G.; Mitchell, W. J. J. Bact. 1993, 175,2137.
- Tangney, M.; Tate, J. E.; Priest, F. G.; Mitchell, W. J. Appl.Environ. Microbiol. 1996, 62, 732.
- Kim, N.; Choi, Y.; Jung, S.; Kim, S. Biotechnol. Bioeng. 2000, 70,109. https://doi.org/10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M
Cited by
- Electricity generation from carbon monoxide and syngas in a microbial fuel cell vol.90, pp.3, 2011, https://doi.org/10.1007/s00253-011-3188-4
- , Exhibiting Electricity Generation Capability vol.47, pp.21, 2013, https://doi.org/10.1021/es402749f
- by microbial electrosynthesis (MES) at high temperature vol.92, pp.2, 2016, https://doi.org/10.1002/jctb.5015
- Comparison and utilization of potential green algal and cyanobacterial species for power generation through algal microbial fuel cell vol.39, pp.5, 2017, https://doi.org/10.1080/15567036.2014.985408
- Performance of microbial fuel cell using chemically synthesized activated carbon coated anode vol.8, pp.4, 2016, https://doi.org/10.1063/1.4955110
- Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications vol.25, pp.5, 2018, https://doi.org/10.1007/s11356-017-0869-2
- A New Method for Modulation, Control and Power Boosting in Microbial Fuel Cells pp.16156846, 2018, https://doi.org/10.1002/fuce.201800009
- Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology vol.6, pp.3, 2006, https://doi.org/10.1002/elsc.200620121
- Electricity generation by thermophilic microorganisms from marine sediment vol.78, pp.1, 2008, https://doi.org/10.1007/s00253-007-1266-4
- Treatment of dairy wastes with a microbial anode formed from garden compost vol.40, pp.2, 2010, https://doi.org/10.1007/s10800-009-0001-5
- Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research vol.59, pp.3, 2010, https://doi.org/10.1007/s00248-009-9623-8
- Development of Bipolar Plate Stack Type Microbial Fuel Cells vol.27, pp.2, 2004, https://doi.org/10.5012/bkcs.2006.27.2.281
- Effect of Initial Carbon Sources on the Performance of a Microbial Fuel Cell Containing Environmental Microorganism Micrococcus luteus vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1591
- Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.168
- Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell vol.156, pp.1, 2004, https://doi.org/10.1016/j.cej.2009.09.031
- Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney vol.79, pp.1, 2004, https://doi.org/10.1007/s00248-019-01381-z
- Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances vol.7, pp.3, 2004, https://doi.org/10.3390/fermentation7030169