DOI QR코드

DOI QR Code

Construction of Microbial Fuel Cells Using Thermophilic Microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius

  • Choi, Young-Jin (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University) ;
  • Jung, Eun-Kyoung (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University) ;
  • Park, Hyun-Joo (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University) ;
  • Paik, Seung R. (School of Chemical Engineering, College of Engineering, Seoul National University) ;
  • Jung, Seun-Ho (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Sung-Hyun (Department of Microbial Engineering & Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2004.06.20

Abstract

A systematic study of microbial fuel cells comprised of thermophilic Bacillus licheniformis and Bacillus thermoglucosidasius has been carried out under various operating conditions. Substantial amount of electricity was generated when a redox mediator was used. Being affected by operation temperature, the maximum efficiency was obtained at 50$^{\circ}C$ with an open circuit voltage of ca. 0.7 V. While a small change around the optimum temperature did not make much effect on the cell performance, the rapid decrease in performance was observed above 70$^{\circ}C$. It was noticeable that fuel cell efficiency and discharge pattern strongly depended on the kind of carbon sources used in the initial culture medium. In the case of B. thermoglucosidasius, glucose alone was utilized constitutively as a substrate in the microbial fuel cell irrespective of used carbons sources. When B. licheniformis was cultivated with lactose as a carbon source, best charging characteristics were recorded. Trehalose, in particular, showed 41.2% coulombic efficiency when B. thermoglucosidasius was cultured in a starch-containing medium. Relatively good repetitive operation was possible with B. thermoglucosidasius cells up to 12 cycles using glucose as a carbon source, when they were cultured with lactose as an initial carbon source. This study demonstrates that highly efficient thermophilic microbial fuel cells can be constructed by a pertinent modulation of the operating conditions and by carefully selecting carbon sources used in the initial culture medium.

Keywords

References

  1. Turner, A. P. F.; Aston, W. J.; Higgins, I. J.; Davis, G.; Hill, H. A. O. Biotechnol. Bioeng. Symp. 1982, 12, 401.
  2. Videla, H. A.; Arvia, A. J. Biotechnol. Bioeng. 1975, 17, 1529. https://doi.org/10.1002/bit.260171011
  3. Wingard, L. B. Jr.; Shaw, C. H.; Castner, J. F. Enzyme Microb.Technol. 1982, 4, 137. https://doi.org/10.1016/0141-0229(82)90104-1
  4. Bennetto, H. P.; Stirling, J. L.; Tanaka, K.; Vega, C. A. Biotechnol.Bioeng. 1983, 25, 559. https://doi.org/10.1002/bit.260250219
  5. Bennetto, H. P.; Dew, M. E.; Striling, J. L.; Tanaka, K. Chem.Indust. 1981, 7, 776.
  6. Bennetto, H. P.; Stirling, J. L. Chem. Indust. 1985, 21, 695.
  7. Allen, R. M.; Bennetto, H. P. Appl. Biochem. Biotechnol. 1993,39, 27. https://doi.org/10.1007/BF02918975
  8. Delaney, G. M.; Bennetto, H. P.; Mason, J. R.; Roller, S. D.;Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984,34B, 13.
  9. Choi, Y.; Song, J.; Jung, S.; Kim, S. J. Microbiol. Biotechnol.2001, 11, 863.
  10. Tanaka, K.; Kashiwagi, N.; Ogawa, T. J. Chem. Tech. Biotechnol. 1988, 42, 235.
  11. Yagishita, T.; Horigome, T.; Tanaka, K. J. Chem. Tech. Biotechnol.1993, 56, 393.
  12. Kim, H. J.; Hyun, M. S.; Chang, I. S.; Kim, B. H. J. Microbiol.Biotechnol. 1999, 9, 365.
  13. Kim, N.; Choi, Y.; Jung, S.; Kim, S. Bull. Korean Chem. Soc.2000, 21, 44.
  14. Thurston, C. F.; Bennetto, H. P.; Delaney, G. M.; Mason, J. R.;Roller, S. D.; Stirling, J. L. J. Gen. Microbiol. 1985, 131, 1393.
  15. Fee, J. A.; Kuila, D.; Mather, M. W.; Yoshida, T. Biochimica etBiophysica Acta 1986, 853, 153. https://doi.org/10.1016/0304-4173(86)90009-1
  16. Haki, G. D.; Rakshit, S. K. Bioresource Technology 2003, 89, 17. https://doi.org/10.1016/S0960-8524(03)00033-6
  17. Choi, Y.; Kim, N.; Kim, S.; Jung, S. Bull. Korean Chem. Soc.2003, 24, 437. https://doi.org/10.5012/bkcs.2003.24.4.437
  18. Tangney, M.; Priest, F. G.; Mitchell, W. J. J. Bact. 1993, 175,2137.
  19. Tangney, M.; Tate, J. E.; Priest, F. G.; Mitchell, W. J. Appl.Environ. Microbiol. 1996, 62, 732.
  20. Kim, N.; Choi, Y.; Jung, S.; Kim, S. Biotechnol. Bioeng. 2000, 70,109. https://doi.org/10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M

Cited by

  1. Electricity generation from carbon monoxide and syngas in a microbial fuel cell vol.90, pp.3, 2011, https://doi.org/10.1007/s00253-011-3188-4
  2. , Exhibiting Electricity Generation Capability vol.47, pp.21, 2013, https://doi.org/10.1021/es402749f
  3. by microbial electrosynthesis (MES) at high temperature vol.92, pp.2, 2016, https://doi.org/10.1002/jctb.5015
  4. Comparison and utilization of potential green algal and cyanobacterial species for power generation through algal microbial fuel cell vol.39, pp.5, 2017, https://doi.org/10.1080/15567036.2014.985408
  5. Performance of microbial fuel cell using chemically synthesized activated carbon coated anode vol.8, pp.4, 2016, https://doi.org/10.1063/1.4955110
  6. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications vol.25, pp.5, 2018, https://doi.org/10.1007/s11356-017-0869-2
  7. A New Method for Modulation, Control and Power Boosting in Microbial Fuel Cells pp.16156846, 2018, https://doi.org/10.1002/fuce.201800009
  8. Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology vol.6, pp.3, 2006, https://doi.org/10.1002/elsc.200620121
  9. Electricity generation by thermophilic microorganisms from marine sediment vol.78, pp.1, 2008, https://doi.org/10.1007/s00253-007-1266-4
  10. Treatment of dairy wastes with a microbial anode formed from garden compost vol.40, pp.2, 2010, https://doi.org/10.1007/s10800-009-0001-5
  11. Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research vol.59, pp.3, 2010, https://doi.org/10.1007/s00248-009-9623-8
  12. Development of Bipolar Plate Stack Type Microbial Fuel Cells vol.27, pp.2, 2004, https://doi.org/10.5012/bkcs.2006.27.2.281
  13. Effect of Initial Carbon Sources on the Performance of a Microbial Fuel Cell Containing Environmental Microorganism Micrococcus luteus vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1591
  14. Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.168
  15. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell vol.156, pp.1, 2004, https://doi.org/10.1016/j.cej.2009.09.031
  16. Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney vol.79, pp.1, 2004, https://doi.org/10.1007/s00248-019-01381-z
  17. Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances vol.7, pp.3, 2004, https://doi.org/10.3390/fermentation7030169