DOI QR코드

DOI QR Code

Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods

  • Bae, Sang-Eun (College of Science and Technology, Korea University) ;
  • Oh, Mi-Kyung (College of Science and Technology, Korea University) ;
  • Min, Nam-Ki (College of Science and Technology, Korea University) ;
  • Paek, Se-Hwan (College of Science and Technology, Korea University) ;
  • Hong, Suk-In (College of Science and Technology, Korea University) ;
  • Lee, Chi-Woo J. (College of Science and Technology, Korea University)
  • Published : 2004.12.20

Abstract

Electrochemical, in situ electrochemical scanning tunneling microscope (EC-STM), and attenuated total reflectance-FTIR (ATR-FTIR) spectroscopic methods were employed to investigate the preparation of atomically flat Si(111)-H surface in ammonium fluoride solutions. Electrochemical properties of atomically flat Si(111)-H surface were characterized by anodic oxidation and cathodic hydrogen evolution with the open circuit potential (OCP) of ca. -0.4 V in concentrated ammonium fluoride solutions. As soon as the natural oxide-covered Si(111) electrode was immersed in fluoride solutions, OCP quickly shifted to near -1 V, which was more negative than the flat band potential of silicon surface, indicating that the surface silicon oxide had to be dissolved into the solution. OCP changed to become less negative as the oxide layer was being removed from the silicon surface. In situ EC-STM data showed that the surface was changed from the initial oxidecovered silicon to atomically rough hydrogen-terminated surface and then to atomically flat hydrogenterminated surface as the OCP moved toward less negative potentials. The atomically flat Si(111)-H structure was confirmed by in situ EC-STM and ATR-FTIR data. The dependence of atomically flat Si(111)-H terrace on mis-cut angle was investigated by STM, and the results agreed with those anticipated by calculation. Further, the stability of Si(111)-H was checked by STM in ambient laboratory conditions.

Keywords

References

  1. Higashi, G. S.; Chabal, Y. J.; Trucks, G. W.; Raghavachari, K. Appl. Phys. Lett. 1990, 56, 656. https://doi.org/10.1063/1.102728
  2. Weldon, M. K.; Queeney, K. T.; Eng, J., Jr; Raghavachari, K.;Chabal, Y. J. Surf. Sci. 2002, 500, 859. https://doi.org/10.1016/S0039-6028(01)01585-0
  3. Cai, W.; Lin, Z.; Strother, T.; Smith, L. M.; Hamers, R. J. J. Phys.Chem. B 2002, 160, 2656.
  4. Hurley, P. T.; Ribbe, A. E.; Buriak, J. M. J. Am. Chem. Soc. 2003,125, 11334. https://doi.org/10.1021/ja035857l
  5. Kern, W. J. Electrochem. Soc. 1990, 137, 1887. https://doi.org/10.1149/1.2086825
  6. Jakob, P.; Chabal, Y. J. J. Chem. Phys. 1991, 95, 2897. https://doi.org/10.1063/1.460892
  7. Pietsch, G. J.; Kohler, U.; Henzler, M. J. Appl. Phys. 1993, 73,4797. https://doi.org/10.1063/1.353845
  8. Houbertz, R.; Memert, U.; Behm, R. J. Surf. Sci. 1998, 396, 198. https://doi.org/10.1016/S0039-6028(97)00669-9
  9. Nakamura, M.; Song, M.-B.; Ito, M. Electrochim. Acta 1996, 41,681. https://doi.org/10.1016/0013-4686(95)00356-8
  10. Niwano, M.; Kondo, U.; Kimura, Y. J. Electrochem. Soc. 2000,147, 1555. https://doi.org/10.1149/1.1393393
  11. Lee, I.-C.; Bae, S.-E.; Song, M.-B.; Lee, J.-S.; Paek, S.-H.; Lee,C.-W. J. Bull. Korean Chem. Soc. 2004, 25, 167. https://doi.org/10.5012/bkcs.2004.25.2.167
  12. Song, M.-B.; Jang, J.-M.; Lee, C.-W. Bull. Korean Chem. Soc.2002, 23, 71. https://doi.org/10.1007/BF02705694
  13. Bae, S.-E.; Lee, C.-W. J. Extended Abstracts of 205th ECSMeeting, 174, 2004.
  14. Woo, D.-H.; Yoo, J.-S.; Park, S.-M.; Jeon, I.-C.; Kang, H. Bull.Korean Chem. Soc. 2004, 25, 577. https://doi.org/10.5012/bkcs.2004.25.4.577
  15. Kaji, K.; Yau, S.-L.; Itaya, K. J. Appl. Phys. 1995, 78, 5727. https://doi.org/10.1063/1.359633
  16. Gerischer, H.; Lubke, M. Ber. Bunsenges. Phys. Chem. 1987, 91,394. https://doi.org/10.1002/bbpc.19870910432
  17. Chelma, M.; Homma, T.; Bertagna, V.; Erre, R.; Kubo, N.; Osaka,T. J. Electroanal. Chem. 2003, 559, 111. https://doi.org/10.1016/S0022-0728(02)01280-9
  18. Tomiat, E.; Matsuda, N.; Itaya, K. J. Vac. Sci. Technol. A 1990, 8,534. https://doi.org/10.1116/1.576382
  19. Allongue, P.; Villeneuve, C. H. de; Morin, S.; Boukherroub, R.;Wayner, D. D. M. Electrochim. Acta 2000, 45, 4591. https://doi.org/10.1016/S0013-4686(00)00610-1
  20. Yau, S.; Fan, F. F.; Bard, A. J. J. Electrochem. Soc. 1992, 139,2825. https://doi.org/10.1149/1.2068987
  21. Matsumura, M.; Fukidome, H. J. Electrochem. Soc. 1996, 143,2683. https://doi.org/10.1149/1.1837071
  22. Allongue, P.; KieLing, V.; Gerischer, H. Electrochim. Acta 1995,40, 1353. https://doi.org/10.1016/0013-4686(95)00071-L
  23. Hines, M. A. Int. Rev. Phys. Chem. 2001, 20, 645. https://doi.org/10.1080/01442350110071966
  24. Kim, Y.; Lieber, C. M. J. Am. Chem. Soc. 1991, 113, 2333. https://doi.org/10.1021/ja00006a079
  25. Ye, S.; Ichihara, T.; Uosaki, K. Appl. Phys. Lett. 1999, 75, 1562. https://doi.org/10.1063/1.124755
  26. Ree, J.; Chang, K.; Kim, Y. H. Bull. Korean Chem. Soc. 2002, 23,205. https://doi.org/10.5012/bkcs.2002.23.2.205
  27. Ree, J.; Chang, K.; Kim, Y. H.; Shin, H. K. Bull. Korean Chem.Soc. 2003, 24, 986. https://doi.org/10.5012/bkcs.2003.24.7.986
  28. Neuwald, U.; Hessel, H. E.; Feltz, A.; Memmert, U.; Behm, R. J.Appl. Phys. Lett. 1992, 60, 1307. https://doi.org/10.1063/1.107325
  29. Bull. Korean Chem. Soc. v.23 Ree, J.;Chang, K.;Kim, Y.H. https://doi.org/10.5012/bkcs.2002.23.2.205

Cited by

  1. F Solution Investigated by OCP, In Situ EC-STM, and ATR-FTIR Spectroscopic Methods vol.112, pp.5, 2008, https://doi.org/10.1021/jp076673m
  2. Extended asymmetric-cut multilayer X-ray gratings vol.23, pp.12, 2015, https://doi.org/10.1364/OE.23.015195
  3. Thiol-Ene Click Microcontact Printing of Gold Nanoparticles onto Silicon Surfaces pp.1480-3291, 2017, https://doi.org/10.1139/cjc-2017-0321
  4. Methodology for Studying Surface Chemistry and Evolution during the Nucleation Phase of Atomic Layer Deposition Using Scanning Tunneling Microscopy pp.1932-7455, 2017, https://doi.org/10.1021/acs.jpcc.7b06491
  5. EC-STM studies on copper electrodeposition at n-Si(111):H electrodes vol.313, pp.None, 2004, https://doi.org/10.1016/j.colsurfa.2007.04.153
  6. Slow etching of triangular pits on atomically flat monohydride terminated Si(111) surface in 40% NH4F solution vol.602, pp.6, 2008, https://doi.org/10.1016/j.susc.2008.01.011