DOI QR코드

DOI QR Code

Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

  • Published : 2004.12.20

Abstract

We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy.

Keywords

References

  1. Zewail, A. H. J. Phys. Chem. 1993, 97, 12427. https://doi.org/10.1021/j100150a001
  2. Zewail, A. H. J. Phys. Chem. A 2000, 104, 5660. https://doi.org/10.1021/jp001460h
  3. Scherer, N. F.; Knee, J. L.; Smith, D. D.; Zewail, A. H. J. Phys.Chem. 1985, 89, 5141. https://doi.org/10.1021/j100270a001
  4. Choi, J. R.; Jeoung, S. C.; Cho, D. W. Bull. Korean Chem. Soc.2003, 24, 1675. https://doi.org/10.5012/bkcs.2003.24.11.1675
  5. Blanchet, V.; Zgierski, M. Z.; Seideman, T.; Stolow, A. Nature1999, 401, 52. https://doi.org/10.1038/43410
  6. Yan, Y.; Nelson, K. A. J. Chem. Phys. 1987, 87, 6240. https://doi.org/10.1063/1.453733
  7. Yan, Y.; Nelson, K. A. J. Chem. Phys. 1987, 87, 6257. https://doi.org/10.1063/1.453454
  8. Banin, U.; Bartana, A.; Ruhman, S.; Kosloff, R. J. Chem. Phys. 1994, 101, 8461. https://doi.org/10.1063/1.468108
  9. Banin, U.; Ruhman, S. J. Chem. Phys. 1993, 98, 4391. https://doi.org/10.1063/1.465066
  10. Yoon, M. C.; Song, J. K.; Cho, S.; Kim, D. Bull. Korean Chem.Soc. 2003, 24, 1075. https://doi.org/10.5012/bkcs.2003.24.8.1075
  11. Joo, T.; Albrecht, A. C. J. Chem. Phys. 1993, 99, 3244. https://doi.org/10.1063/1.466194
  12. Eesley, G. L. In Coherent Raman Spectroscopy; Pergamon Press:New York, 1981; Chapter 3.
  13. Lee, S.-Y.; Heller, E. J. J. Chem. Phys. 1979, 71, 4777. https://doi.org/10.1063/1.438316
  14. Williams, S.; Imre, D. G. J. Phys. Chem. 1988, 92, 3363. https://doi.org/10.1021/j100323a012
  15. Lu, J.; Lee, S.-Y. J. Chem. Phys. 1996, 104, 8237. https://doi.org/10.1063/1.471577
  16. Biswas, N.; Umapathy, S. J. Chem. Phys. 1997, 107, 7849. https://doi.org/10.1063/1.475097
  17. Kim, H. J.; Kim, Y. S. Bull. Korean Chem. Soc. 2001, 22, 455.
  18. Owyoung, A. IEEE J. Quantum Electron. 1978, QE-14, 192.
  19. Owyoung, A. In Chemical Applications of Nonlinear RamanSpectrosopy; Harvey, A. B., Ed.; Academic Press: London, 1981;Chapter 7.
  20. Shen, Y. R. In The Principles of Nonlinear Optics; JOHN WILEY& SONS: New York, 1984; Chapter 10.
  21. Boyd, R. W. In Nonlinear Optics; Academic Press: New York,1992; Chapter 9.
  22. McCamant, D. W.; Kukura, P.; Mathies, R. A. Appl. Spectrosc.2003, 57, 1317. https://doi.org/10.1366/000370203322554455
  23. Kukura, P.; McCamant, D. W.; Davis, P. H.; Mathies, R. A. Chem.Phys. Lett. 2003, 382, 81. https://doi.org/10.1016/j.cplett.2003.10.051
  24. Kukura, P.; McCamant, D. W.; Mathies, R. A. J. Phys. Chem. A 2004, 108, 5921. https://doi.org/10.1021/jp0482971
  25. Lee, S.-Y.; Zhang, D.; McCamant, D. W.; Kukura, P.; Mathies, R.A. J. Chem. Phys. 2004, 121, 3632. https://doi.org/10.1063/1.1777214
  26. Yoshizawa, M.; Kurosawa, M. Phys. Rev. A 1999, 61, 13808. https://doi.org/10.1103/PhysRevA.61.013808
  27. Yoshizawa, M.; Kubo, M.; Kurosawa, M. J. Lumin. 2000, 87-89,739. https://doi.org/10.1016/S0022-2313(99)00381-6
  28. Kang, I.; Krauss, T.; Wise, F. Opt. Lett. 1997, 22, 1077. https://doi.org/10.1364/OL.22.001077
  29. Kovalenko, S. A.; Dobryakov, A. L.; Ruthmann, J.; Ernsting, N. P.Phys. Rev. A 1999, 59, 2369. https://doi.org/10.1103/PhysRevA.59.2369
  30. Wang, J.-K.; Chiu, T.-L.; Chi, C.-H.; Sun, C.-K. J. Opt. Soc. Am.B 1999, 16, 651. https://doi.org/10.1364/JOSAB.16.000651
  31. J. Chem. Phys. v.104 Lu, J.;Lee, S.Y. https://doi.org/10.1063/1.471577
  32. J. Chem. Phys. v.71 Biswas, N.;Umapathy, S. https://doi.org/10.1063/1.438316
  33. j. Phys. Chem. v.92 Williams, S.;Imre, D.G. https://doi.org/10.1021/j100323a012

Cited by

  1. Femtosecond Stimulated Raman Spectroscopy vol.58, pp.1, 2007, https://doi.org/10.1146/annurev.physchem.58.032806.104456
  2. Femtosecond stimulated Raman spectroscopy of methanol and acetone in a noncollinear geometry using a supercontinuum probe vol.25, pp.10, 2008, https://doi.org/10.1364/JOSAB.25.001714
  3. Disturbing interference patterns in femtosecond stimulated Raman microscopy vol.41, pp.6, 2009, https://doi.org/10.1002/jrs.2488
  4. Excited State Dynamics of Curcumin and Solvent Hydrogen Bonding vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.3090
  5. Ultrafast Raman loss spectroscopy (URLS): instrumentation and principle vol.42, pp.10, 2011, https://doi.org/10.1002/jrs.2996
  6. Time-gated pre-resonant femtosecond stimulated Raman spectroscopy of diethylthiatricarbocyanine iodide vol.16, pp.11, 2014, https://doi.org/10.1039/C3CP54870H
  7. Femtosecond Stimulated Raman Spectroscopy vol.17, pp.9, 2016, https://doi.org/10.1002/cphc.201600104
  8. Selective suppression of CARS signal with three-beam competing stimulated Raman scattering processes vol.20, pp.25, 2018, https://doi.org/10.1039/C8CP02230E
  9. A femtosecond stimulated raman spectrograph for the near ultraviolet vol.85, pp.4, 2006, https://doi.org/10.1007/s00340-006-2386-8
  10. The ketene intermediate in the photochemistry of ortho-nitrobenzaldehyde vol.10, pp.26, 2008, https://doi.org/10.1039/b800616d
  11. Ultrafast Raman loss spectroscopy vol.40, pp.3, 2009, https://doi.org/10.1002/jrs.2199
  12. Femtosecond stimulated Raman microscopy vol.87, pp.3, 2004, https://doi.org/10.1007/s00340-007-2630-x
  13. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  14. Spectral modulation of stimulated Raman scattering signal: Beyond weak Raman pump limit vol.49, pp.4, 2004, https://doi.org/10.1002/jrs.5336
  15. Mitigating cross‐phase modulation artifacts in femtosecond stimulated Raman scattering vol.51, pp.11, 2004, https://doi.org/10.1002/jrs.5958