DOI QR코드

DOI QR Code

Deposition of Alkali Metal Ions at Polypyrrole Film Electrodes Modified with Fullerene

플러렌으로 수식된 피를 고분자 피막전극에 알카리 금속이온의 포집

  • Published : 2004.02.01

Abstract

To electropolymerize Polypyrrole(ppy) film modified with fullerene $ions(full^-)$ the cell, Au/5 mM pyrrole, 1mM fullerene, 0.1M $TBABF_4,\;CH_2Cl_2/Pt$, was employed to Prepare the wafer-like type of $electrode/ppy(full^-)ppy(full^-){\ldots}$ electrodes. They were applied to deposit alkali metal ions with the cell of Au(quartz crystal analyzer; QCA)/ppy$(full^-)$, 0.01M metal ion(aq.)/Pt. The depositing rate constant of each ion for $Li^+,\;Na^+,\;K^+,\;Rb^+\;and\;Cs^+$, determined from the first order equation was $1.60\times10^{-8},\;3.13\times10^{-11},\;1.38\times10^{-9},\;2.71\times10^{-11}\;and\;2.98\times10^{-12}mo1.s^{-1}$ respectively. The calculated stoichiometry of the ions determined by quartz crystal microbalance(QCM) at the electrodes was $Li_7C_{60},\;Na_4C_{60},\;K_3C_{60},\;Rb_1C_{60}\;and\;Cs_1C_{60}$ respectively.

플러렌 이온$(full^-)$으로 수식된 피를 고분자 피막을 전기화학법으로 중합하기 위하여 사용된 전지는 Au/5mM pyrrole, 1mM fullerene, 0.1M $TBABF_4,\; CH_2C1_2/Pt$이었으며 이 전지로 $electrode/ppy(full^-)ppy(full^-){\ldots}$와 같은 웨이퍼형의 전극을 제작하였다. 이 전극을 사용한 Au(quartz crystal analyzer; QCA)/ppy$(full^-)$, 0.01M metal ion(aq.)/Pt형의 전지로 알카리 금속이온을 포집하였다. $Li^+,\;Na^+,\;K^+,\;Rb^+$$Cs^+$이온의 포집에 대한 속도상수는 일차반응 속도식으로 계산한 결과 그 값이 각각 $1.60\times10^{-8},\;3.13\times10^{-11},\;1.38\times10^{-9},\;2.71\times10^{-11}$$2.98\times10^{-12}mo1.s^{-1}$이였다. 이 전극을 수정판 미량저울(QCM)을 적용하여 결정한 각 이온의 화학양론은 $Li_7C_{60},\;Na_4C_{60},\;K_3C_{60},\;Rb_1C_{60}$$Cs_1C_{60}$이었다.

Keywords

References

  1. R. F. Lane, and A. T.Hubbard, J. Phys. Chem., 77, 1401 (1973) https://doi.org/10.1021/j100630a018
  2. Murray, R. W., 'Electroanalytical Chemistry,' vol.(13), Marcel Dekker, NY. p.191 (1984)
  3. R. D. Rocklin, and R. W. Murray, J. Electroanal. Chem., 100, 271 (1979) https://doi.org/10.1016/S0022-0728(79)80168-0
  4. S. K Cha, J. Polymer Sci. part B, 35, 165 (1997) https://doi.org/10.1002/(SICI)1099-0488(19970115)35:1<165::AID-POLB14>3.0.CO;2-B
  5. W. S. Kim, H. S. Song, and B. O. Lee, Macromo. Res., 10(5), (2002)
  6. H. D. Abruna, and A. J. Bard, J. Am. Chem. Soc., 103, 6898 (1980)
  7. M. S. Wrighton, R. G. Austin, A. B. Bocarsly, J. M. Bolts, O. Haas, K. D. Legg, L. Nadjo, and M. C. Palazzotto, J. Am. Chem. Soc., 100, 7264 (1978) https://doi.org/10.1021/ja00491a024
  8. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smally, Nature, 318, 162 (1985) https://doi.org/10.1038/318162a0
  9. C.-W. Lee, J.-H. Yoon, H. W. Cho, S. E. Bae and K.-B. Lee, J. Kor. Electrochem. Soc., 5(4), 202 (2002) https://doi.org/10.5229/JKES.2002.5.4.202
  10. K. S. Jang, B. Moon, E. J. Oh, J. -H. Hong, J. Kor. Electrochem. Soc., 6(2), 134 (2003) https://doi.org/10.5229/JKES.2003.6.2.134
  11. W. Kratschmer, K. Fostiropoulos, and D. R. Huffman, Chem. Phys. Lett., 96, 4160 (1992)
  12. S. H. Kim, J. S. Yoo, J. H. Hahn, and I. C. Jeon, Bull. Kor. Chem. Soc., 14(2), 711(1993)
  13. J. C. Lee, T. Y. Kim, S. H. Kang, and Y. K. Shim, Bull. Kor. Chem. Soc., 22(3), 257 (2001)
  14. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature, 347, 354 (1990) https://doi.org/10.1038/347354a0
  15. S. H. Glarum, S. J. Duclos, and R. C. Haddon, J. Am. Chem. Soc., 114, 1996 (1992) https://doi.org/10.1021/ja00032a010
  16. T. Akasaka, and W. Ando, J. Am. Chem. Soc., 115, 1605 (1993) https://doi.org/10.1021/ja00057a072
  17. D. Dubois, and K. M. Kadish, J. Am. Chem. Soc., 113, 7773 (1991) https://doi.org/10.1021/ja00020a056
  18. A.Deronzer, and J. C. Muoutet, J. Am. Chem. Soc., 116, 5010 (1994)
  19. D. A. Buttry, and M. D. Ward, Chem. Rev., 92, 1355 (1992) https://doi.org/10.1021/cr00014a006
  20. S. Ruth, H. Blerier and W. Pukaki, Faraday Discuss Chem. Soc. 88, 223 (1989) https://doi.org/10.1039/dc9898800223