DOI QR코드

DOI QR Code

Energy Budget of Snotted Halibut Juvenile, Eopsetta griorjewi with Two Different Prey Items

먹이에 따른 물가자미 (Eopsetta grigorjewi) 치어의 에너지 수지

  • Published : 2003.08.01

Abstract

Gross energy intake fecal, nitrogen excretory and metabolized energy of snotted halibut juvenile, Eopsetta grigorjewi, fed on Tigriopus iaponicus (Group A) and the enriched Artemia nauplii (Group B), were quantitatively investigated and represented as balance equations of energy and material. Absorption efficiency (AE), gross conversion efficiency $(K_1)$ and net conversion efnciency $(K_2)$ were also estimated to understand the changes in efficiency by the prey Gross energy intake, fecal, nitrogen excretory, metabolized and growth energy of Group A were $2.790\pm0.247,\;0.495\pm0.046,\;0.018\pm0.003,\;0.214\pm0.047\;cal\;mg^{-1}\;day^{-1}$ and $2.063\;cal\;mg^{-1}\;day^{-1},$ respectively. The same parameters of Group B were $4.801\pm0.165,\;0.579\pm0.031,\;0.055\pm0.010,\;0.306\pm0.048\;cal\;mg^{-1}\;day^{-1}$ and $3.861\;cal\;mg^{-1}\;day^{-1},$ respectively. Energy budget of Group A and B were represented as 100 C= 7.67 M+17.7 F+0.65 U+73.94 G and 100C=6.37 M+ 12.1 F+1.15 U+80.42 G, respectively, where C, M, F, U, and G represent gross energy intake, metabolized energy, fecal energy, nitrogen excretory (non-fecal) energy and growth energy, respectively. AEs of Croup A and B were $81.52\pm1.89,\;86.79\pm0.70\%,$ respectively, with significant difference at p=0.01 level. However, $K_1\;and K_2$ of Group A and B showed no significant difference at p=0.01 level, with $74.21\pm6.57,\;80.48\pm2.76\%\;and\;91.17\pm7.26,\;92.74\pm2.69\%$ respectively. These results suggest that T. japonicus is a possible substitute for Artemia nauplii for the snotted halibut juvenile.

Keywords

References

  1. Han, K.N. 1998. Effect of starvation on growth, survival and feeding incidence of Tiger puffer (Takifugu rubripes) larvae. J. Kor. Aquacul. Soc., 11, 521-528 (in Korean)
  2. Allen, J.R.M. and R.J. Wootton. 1983. Rate of food consumption in a population of three spined stickle-back, Gasterosteus aculeatus estimated from the fecal production. Environ. BioI. Fish., 8, 157-168 https://doi.org/10.1007/BF00005182
  3. Brett, J.R. 1976. Feeding metabolic rates of sockeye salmon, Oncorhynchus nerka in relation to ration level and temperature. Environ. Can. Fish. Mar. Serv. Tech. Rep., 675, 1-18
  4. Brett, J.R. and T.D.D. Groves. 1979. Physiological Energetics. In: Fish Physiology, Vol. VIII, Hoar, W.S., D.J. Randall and J.R. Brett, eds. Academic Press, London, pp. 279-352
  5. Durante, H. 1986. Influence d'alimentation sur la croissance des larves de la carpe (Cyprinus carpio) et de coregone (Coregonus shinzi palea). Aspects morphologiques. These de 3 cycle, Univ. Bordeaux, Bordeaux, France., 173 pp
  6. Edwards, R.R.C., M, Finlayson and J.H. Steele. 1972. An experimental study of the oxygen consumption, growth and metabolism of the cod (Gadus morhua L.). J. Exp. Mar. BioI. Ecol., 8, 299-309 https://doi.org/10.1016/0022-0981(72)90068-8
  7. Elliott, J.M. and W. Davison. 1975. Energy equivalents of oxygen consumption in animal energetics. Oecolo-gia, 19, 195-301 https://doi.org/10.1007/BF00345305
  8. Elliott, J.M. 1976a. The energetics of feeding, metabolism and growth of brown trout (Salmo trutta L.) in relation to body weight, water temperature and ration size. J. Anim. Ecol., 45, 923-948 https://doi.org/10.2307/3590
  9. Elliott, J.M. 1976b. Energy losses in the waste products of brown trout (Salmo trutta L.). J. Anim. Ecol., 45, 561-580 https://doi.org/10.2307/3891
  10. Forster, R.P. and L. Goldstein. 1969. Formation of excre-tory products. In: Fish Physiology, Vol. I, Hoar, W.S. and D.J. Randall, eds. Academic Press, New York, pp. 313-350
  11. From, J. and G. Rasmussen. 1984. A growth model, gastric evacuation and body composition in rainbow trout Salmo gairdneri Richardson. Dana, 3, 61-139
  12. Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. In: Fish Physiology, Vol. VI, Hoar, D.J., D.J. Randall and J.R. Brett, eds. Academic Press, New York, pp. 1-98
  13. Fujita, S. 1973. Importance of zooplankton mass culture in producing marine fish seed for fish farming. Bull. Plankton. Soc. Japan, 20, 49-53
  14. Fukusho, K., O. Hara, H. Iwamoto and C. Kitajima. 1977. Mass production of the copepod, Tigriopus japonicus in combination with the rotifer, Brachionus plicatilis feeding baking yeast and using large-scale outdoor tanks (April-August). Bull Nagasaki Pref. Inst. Fish, 3, 33-40
  15. Ghiretti, F. 1966. Respiration. In: Physiology of Mollusca, Vol. II, Wilbur, K.M. and C.M. Yonge, eds. Academic Press, London, pp. 175-208
  16. Gulbrandsen, J. 1993. Prey consumption of Atlantic halibut (Hippoglossus hippoglossus L.) larvae: selectivity or availability? Aquaculture, 116, 159-170 https://doi.org/10.1016/0044-8486(93)90006-K
  17. Hatanaka, M. and M. Takahashi. 1956. Utilization of food by mackerel, Pneumatophorus japonicus. Tohoku J. Agric. Res., 7, 51-57
  18. Jobling, M. 1981. The influence of feeding on the metabolic rate of fishes: A short review. J. Fish BioI. 18, 385-400 https://doi.org/10.1111/j.1095-8649.1981.tb03780.x
  19. Jobling, M. 1994. Physiological energetics: Feeding, meta-bolism and growth. In: Fish bioenergetics. Pitcher, T.J, ed. Chapman and Hall, New York, pp. 90-206
  20. Kitchell, J.F. 1983. Energetics. In: Fish biomechanics, Webb, P. W. and D. Weihs, eds. New York, pp. 312-338
  21. Lee, C.S. and F. Hu, 1981. Salinity tolerance and salinity effects on brood size of Tigriopus japonicus Mori. Aquaculture, 22, 377-379 https://doi.org/10.1016/0044-8486(81)90164-2
  22. Leitritz, E. and R.C. Lewis. 1976. Trout and salmon culture. State of California, Dept Fish Game, Fish. Bull., No. 164, 1-197
  23. Mills, E.L. and J.L. Forney. 1981. Energetics, food con-sumption and growth of young yellow perch in Oneida Lake. Trans. Am. Fish. Soc., 110, 479-488 https://doi.org/10.1577/1548-8659(1981)110<479:EFCAGO>2.0.CO;2
  24. Muir, B.S. and A.J. Niimi. 1972. Oxygen consumption of the euryhaline fish aholeho1e (Kuhlia sandvicensis) with reference to salinity, swimming, and food con-sumption. J. Fish. Res. Board Can., 29, 67-77 https://doi.org/10.1139/f72-009
  25. Naess, T., M. Germain-Henry and K.E. Naas. 1995. First feeding of Atlantic halibut (Hippoglossus hippo-glossus) using different combinations of Artemia and wild zooplankton. Aquaculture, 130, 235-250 https://doi.org/10.1016/0044-8486(94)00323-G
  26. O'Connell, C.P. 1976. Histological criteria for diagnosing the starving condition in early post yolk sac larvae of the northern anchovy, Engraulis mordax Girard. J. Exp. Mar. Biol. Ecol., 25, 285-312 https://doi.org/10.1016/0022-0981(76)90130-1
  27. Pandian, T.J. 1987. Fish. In: Animal energetics. Vol. II, Pandian, T.J. and F.J. Vemberg, eds. Academic Press, 357-465
  28. Payan, P. and A.J. Matty. 1975. The characteristics of ammonia excretion by a perfused isolated head of trout (Salmo gairdneri): Effect of temperature and $CO_{2}-free$ ringer. J. Comp. Physiol., 96, 167-184 https://doi.org/10.1007/BF00706596
  29. Payne, M.F. and R.J. Rippingale. 2000. Rearing West Australian seahorse, Hippocampus subelongatus, juveniles on copepod nauplii and enriched Artemia. Aquaculture, 188, 353-361 https://doi.org/10.1016/S0044-8486(00)00349-5
  30. Payne, M.F., R.J. Rippingale and J.J. Cleary. 2001. Cultured copepods as food for West Australian dhufish (Glaucosoma hebraicum) and pink snapper (Pagrus auratus) larvae. Aquaculture, 194, 137-150 https://doi.org/10.1016/S0044-8486(00)00513-5
  31. Raciborski, K. 1987. Energy and protein transformation in sea trout (Salmo trutta L.) larvae during transition from yolk to external food. Pol. Arch. Hydrobiol., 34, 437-502
  32. Rychly, J. 1980. Nitrogen balance in trout. II. Nitrogen excretion and retention after feeding diets with varying protein and carbohydrate levels. Aquaculture, 20, 243-350
  33. Sargent, J.R., L.A. McEvory and J.G. Bell. 1997. Require-ments, presentation and source of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155, 117-127 https://doi.org/10.1016/S0044-8486(97)00122-1
  34. Solorzano. L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceangr., 14, 799-801 https://doi.org/10.4319/lo.1969.14.5.0799
  35. Takano, H. 1971. Breeding experiments of a marine littoral copepod Tigriopus japonicus Mori. Tokai. Reg. Fish. Res. Lab., 64, 71-79
  36. Theilacker, G.H. 1978. Effect of starvation on the histological and morphological characteristics of jack mackerel, Trachurus symmetricus larvae. Fish. Bull. U.S., 76, 403-414
  37. Uhling, G. 1984. Progress in mass cultivation of harpac-ticoid copepods for mariculture purpose. J. Europ. Maricult. Soc., 8, 261-271
  38. Warren, C.E. and G.E. Davis. 1967. Laboratory studies on the feeding, bioenergetics and growth of fish. In: The biological basis of freshwater fish production, S.D. Gerking, ed. Blackwell, Oxford, pp. 175-214
  39. Watanabe, T., T. Arakawa, C. Kitajima, K. Fukusho and S. Fujita. 1978a. Proximate and mineral composition of living feeds used in seed production of fish. Bull. Jap. Soc. Sci. Fish. 44, 973-984
  40. Watanabe, T., T. Arakawa, C. Kitajima, K. Fukusho and S. Fujita. 1978b. Nutritional quality of living feed from the viewpoint of essential fatty acids for fish. Bull. Jap. Soc. Sci. Fish., 44, 1223-1227 https://doi.org/10.2331/suisan.44.1223
  41. Watanabe, T. 1988. Larval diets. In: Fish nutrition and mariculture, Japan International Cooperation Agency, pp. 95-131
  42. Wood, J.D. 1958. Nitrogen excretion in some marine fishes. Can. J. Biochem. Physiol., 36, 1237-1242 https://doi.org/10.1139/o58-134
  43. Zeuthen, E. 1970. Rate of living as related to body size in organism. Pol. Arch. Hydrobiol., 17, 21-30
  44. Zillionx, E.J. 1969. A continuous recirculating culture system for planktonic copepods. Mar. BioI., 4, 215-218 https://doi.org/10.1007/BF00393895