Browse > Article
http://dx.doi.org/10.5657/kfas.2003.36.4.358

Energy Budget of Snotted Halibut Juvenile, Eopsetta griorjewi with Two Different Prey Items  

LEE Seon-Sik (Department of Oceanography, Inha University)
HAN Kyoung-Nam (Department of Oceanography, Inha University)
YOON Won-Duk (West Sea Fisheries Research Institute, NFRDI)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.36, no.4, 2003 , pp. 358-364 More about this Journal
Abstract
Gross energy intake fecal, nitrogen excretory and metabolized energy of snotted halibut juvenile, Eopsetta grigorjewi, fed on Tigriopus iaponicus (Group A) and the enriched Artemia nauplii (Group B), were quantitatively investigated and represented as balance equations of energy and material. Absorption efficiency (AE), gross conversion efficiency $(K_1)$ and net conversion efnciency $(K_2)$ were also estimated to understand the changes in efficiency by the prey Gross energy intake, fecal, nitrogen excretory, metabolized and growth energy of Group A were $2.790\pm0.247,\;0.495\pm0.046,\;0.018\pm0.003,\;0.214\pm0.047\;cal\;mg^{-1}\;day^{-1}$ and $2.063\;cal\;mg^{-1}\;day^{-1},$ respectively. The same parameters of Group B were $4.801\pm0.165,\;0.579\pm0.031,\;0.055\pm0.010,\;0.306\pm0.048\;cal\;mg^{-1}\;day^{-1}$ and $3.861\;cal\;mg^{-1}\;day^{-1},$ respectively. Energy budget of Group A and B were represented as 100 C= 7.67 M+17.7 F+0.65 U+73.94 G and 100C=6.37 M+ 12.1 F+1.15 U+80.42 G, respectively, where C, M, F, U, and G represent gross energy intake, metabolized energy, fecal energy, nitrogen excretory (non-fecal) energy and growth energy, respectively. AEs of Croup A and B were $81.52\pm1.89,\;86.79\pm0.70\%,$ respectively, with significant difference at p=0.01 level. However, $K_1\;and K_2$ of Group A and B showed no significant difference at p=0.01 level, with $74.21\pm6.57,\;80.48\pm2.76\%\;and\;91.17\pm7.26,\;92.74\pm2.69\%$ respectively. These results suggest that T. japonicus is a possible substitute for Artemia nauplii for the snotted halibut juvenile.
Keywords
Snotted halibut; Eopsetta grigorjewi; Tigriopus japonicus; Enriched Aytemia nauplii; Energy budget;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Takano, H. 1971. Breeding experiments of a marine littoral copepod Tigriopus japonicus Mori. Tokai. Reg. Fish. Res. Lab., 64, 71-79
2 Theilacker, G.H. 1978. Effect of starvation on the histological and morphological characteristics of jack mackerel, Trachurus symmetricus larvae. Fish. Bull. U.S., 76, 403-414
3 Uhling, G. 1984. Progress in mass cultivation of harpac-ticoid copepods for mariculture purpose. J. Europ. Maricult. Soc., 8, 261-271
4 Warren, C.E. and G.E. Davis. 1967. Laboratory studies on the feeding, bioenergetics and growth of fish. In: The biological basis of freshwater fish production, S.D. Gerking, ed. Blackwell, Oxford, pp. 175-214
5 Watanabe, T., T. Arakawa, C. Kitajima, K. Fukusho and S. Fujita. 1978a. Proximate and mineral composition of living feeds used in seed production of fish. Bull. Jap. Soc. Sci. Fish. 44, 973-984
6 Watanabe, T., T. Arakawa, C. Kitajima, K. Fukusho and S. Fujita. 1978b. Nutritional quality of living feed from the viewpoint of essential fatty acids for fish. Bull. Jap. Soc. Sci. Fish., 44, 1223-1227   DOI
7 Watanabe, T. 1988. Larval diets. In: Fish nutrition and mariculture, Japan International Cooperation Agency, pp. 95-131
8 Wood, J.D. 1958. Nitrogen excretion in some marine fishes. Can. J. Biochem. Physiol., 36, 1237-1242   DOI
9 Zeuthen, E. 1970. Rate of living as related to body size in organism. Pol. Arch. Hydrobiol., 17, 21-30
10 Zillionx, E.J. 1969. A continuous recirculating culture system for planktonic copepods. Mar. BioI., 4, 215-218   DOI
11 O'Connell, C.P. 1976. Histological criteria for diagnosing the starving condition in early post yolk sac larvae of the northern anchovy, Engraulis mordax Girard. J. Exp. Mar. Biol. Ecol., 25, 285-312   DOI   ScienceOn
12 Payne, M.F., R.J. Rippingale and J.J. Cleary. 2001. Cultured copepods as food for West Australian dhufish (Glaucosoma hebraicum) and pink snapper (Pagrus auratus) larvae. Aquaculture, 194, 137-150   DOI   ScienceOn
13 Pandian, T.J. 1987. Fish. In: Animal energetics. Vol. II, Pandian, T.J. and F.J. Vemberg, eds. Academic Press, 357-465
14 Payan, P. and A.J. Matty. 1975. The characteristics of ammonia excretion by a perfused isolated head of trout (Salmo gairdneri): Effect of temperature and $CO_{2}-free$ ringer. J. Comp. Physiol., 96, 167-184   DOI
15 Payne, M.F. and R.J. Rippingale. 2000. Rearing West Australian seahorse, Hippocampus subelongatus, juveniles on copepod nauplii and enriched Artemia. Aquaculture, 188, 353-361   DOI   ScienceOn
16 Raciborski, K. 1987. Energy and protein transformation in sea trout (Salmo trutta L.) larvae during transition from yolk to external food. Pol. Arch. Hydrobiol., 34, 437-502
17 Rychly, J. 1980. Nitrogen balance in trout. II. Nitrogen excretion and retention after feeding diets with varying protein and carbohydrate levels. Aquaculture, 20, 243-350
18 Sargent, J.R., L.A. McEvory and J.G. Bell. 1997. Require-ments, presentation and source of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155, 117-127   DOI   ScienceOn
19 Solorzano. L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceangr., 14, 799-801   DOI   ScienceOn
20 Gulbrandsen, J. 1993. Prey consumption of Atlantic halibut (Hippoglossus hippoglossus L.) larvae: selectivity or availability? Aquaculture, 116, 159-170   DOI   ScienceOn
21 Kitchell, J.F. 1983. Energetics. In: Fish biomechanics, Webb, P. W. and D. Weihs, eds. New York, pp. 312-338
22 Hatanaka, M. and M. Takahashi. 1956. Utilization of food by mackerel, Pneumatophorus japonicus. Tohoku J. Agric. Res., 7, 51-57
23 Jobling, M. 1981. The influence of feeding on the metabolic rate of fishes: A short review. J. Fish BioI. 18, 385-400   DOI
24 Jobling, M. 1994. Physiological energetics: Feeding, meta-bolism and growth. In: Fish bioenergetics. Pitcher, T.J, ed. Chapman and Hall, New York, pp. 90-206
25 Lee, C.S. and F. Hu, 1981. Salinity tolerance and salinity effects on brood size of Tigriopus japonicus Mori. Aquaculture, 22, 377-379   DOI   ScienceOn
26 Leitritz, E. and R.C. Lewis. 1976. Trout and salmon culture. State of California, Dept Fish Game, Fish. Bull., No. 164, 1-197
27 Mills, E.L. and J.L. Forney. 1981. Energetics, food con-sumption and growth of young yellow perch in Oneida Lake. Trans. Am. Fish. Soc., 110, 479-488   DOI
28 Muir, B.S. and A.J. Niimi. 1972. Oxygen consumption of the euryhaline fish aholeho1e (Kuhlia sandvicensis) with reference to salinity, swimming, and food con-sumption. J. Fish. Res. Board Can., 29, 67-77   DOI
29 Naess, T., M. Germain-Henry and K.E. Naas. 1995. First feeding of Atlantic halibut (Hippoglossus hippo-glossus) using different combinations of Artemia and wild zooplankton. Aquaculture, 130, 235-250   DOI   ScienceOn
30 Edwards, R.R.C., M, Finlayson and J.H. Steele. 1972. An experimental study of the oxygen consumption, growth and metabolism of the cod (Gadus morhua L.). J. Exp. Mar. BioI. Ecol., 8, 299-309   DOI   ScienceOn
31 Elliott, J.M. and W. Davison. 1975. Energy equivalents of oxygen consumption in animal energetics. Oecolo-gia, 19, 195-301   DOI
32 Elliott, J.M. 1976a. The energetics of feeding, metabolism and growth of brown trout (Salmo trutta L.) in relation to body weight, water temperature and ration size. J. Anim. Ecol., 45, 923-948   DOI   ScienceOn
33 Elliott, J.M. 1976b. Energy losses in the waste products of brown trout (Salmo trutta L.). J. Anim. Ecol., 45, 561-580   DOI   ScienceOn
34 Forster, R.P. and L. Goldstein. 1969. Formation of excre-tory products. In: Fish Physiology, Vol. I, Hoar, W.S. and D.J. Randall, eds. Academic Press, New York, pp. 313-350
35 From, J. and G. Rasmussen. 1984. A growth model, gastric evacuation and body composition in rainbow trout Salmo gairdneri Richardson. Dana, 3, 61-139
36 Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. In: Fish Physiology, Vol. VI, Hoar, D.J., D.J. Randall and J.R. Brett, eds. Academic Press, New York, pp. 1-98
37 Fujita, S. 1973. Importance of zooplankton mass culture in producing marine fish seed for fish farming. Bull. Plankton. Soc. Japan, 20, 49-53
38 Fukusho, K., O. Hara, H. Iwamoto and C. Kitajima. 1977. Mass production of the copepod, Tigriopus japonicus in combination with the rotifer, Brachionus plicatilis feeding baking yeast and using large-scale outdoor tanks (April-August). Bull Nagasaki Pref. Inst. Fish, 3, 33-40
39 Han, K.N. 1998. Effect of starvation on growth, survival and feeding incidence of Tiger puffer (Takifugu rubripes) larvae. J. Kor. Aquacul. Soc., 11, 521-528 (in Korean)
40 Ghiretti, F. 1966. Respiration. In: Physiology of Mollusca, Vol. II, Wilbur, K.M. and C.M. Yonge, eds. Academic Press, London, pp. 175-208
41 Allen, J.R.M. and R.J. Wootton. 1983. Rate of food consumption in a population of three spined stickle-back, Gasterosteus aculeatus estimated from the fecal production. Environ. BioI. Fish., 8, 157-168   DOI
42 Brett, J.R. 1976. Feeding metabolic rates of sockeye salmon, Oncorhynchus nerka in relation to ration level and temperature. Environ. Can. Fish. Mar. Serv. Tech. Rep., 675, 1-18
43 Brett, J.R. and T.D.D. Groves. 1979. Physiological Energetics. In: Fish Physiology, Vol. VIII, Hoar, W.S., D.J. Randall and J.R. Brett, eds. Academic Press, London, pp. 279-352
44 Durante, H. 1986. Influence d'alimentation sur la croissance des larves de la carpe (Cyprinus carpio) et de coregone (Coregonus shinzi palea). Aspects morphologiques. These de 3 cycle, Univ. Bordeaux, Bordeaux, France., 173 pp