DOI QR코드

DOI QR Code

균열선단의 소성스트레치를 이용한 피로균열성장모델

A model of fatigue crack growth based on plastic stretch at the crack tip

  • 발행 : 2003.04.01

초록

피로균열성장모델을 유도하고 지연모델을 제안하였다. 피로균열성장모델은 피로균열선단의 소성변형으로 인하여 균열표면에 발생하는 잔류소성스트레치를 고려하고 있다. 균열 성장률은 균열선단 재료요소의 소성변형에너지와 누적피로손상으로부터 계산된다. 유도한 균열성장모델로부터 계산한 균열성장률은 AL6061-T651과 17-4PH 주강의 시험결과와 잘 일치하고 있다. 피로균열성장지연모델은 인장과대하중으로부터 생성된 잔류소성스트레치를 근거로 하고 있으며, 인장과대하중은 다음 하중 사이클의 소성변형률을 감소시킨다. Strip-yield모델을 이용하여 균열선단의 소성역을 계산하였다. 새로 제안된 지연모델은 인장과대하중하의 피로균열선장특성 및 지체지연 현상을 잘 기술하고 있다.

The fatigue crack growth model is derived and the retardation model is proposed. The fatigue crack growth model considers the residual plastic stretch on the crack surface which results from the plastic deformation at the tip of fatigue crack. The fatigue crack growth rate is calculated by using the cumulative fatigue damage and plastic strain energy in the material elements at the crack tip. This model gives the crack growth rate in reasonable agreement with test data for aluminum alloy AL6061-T651 and 17-4PH casting steel. The fatigue crack growth retardation model is based on the residual plastic stretch produced from a tensile overload which reduced the plastic strain range of the following load cycles. A strip-yield model of a crack tip plasticity is used for the calculation of a plastic zone size. The proposed retardation model characterized the observed features and delayed retardation of the fatigue crack growth under tensile overload.

키워드

참고문헌

  1. O. E. Wheeler, Spectrum loading and crack growth, J. Basic Eng., Trans. ASME, D, Vol.94, pp.181-186, 1972 https://doi.org/10.1115/1.3425362
  2. J. Willenborg, R. M Engle, and H, A. Wood, A crack growth retardation model using an effective stress concept, AFFDL-TM-71-1-FBR, 1971
  3. W. Elber, The significance of fatigue crack closure, ASTM STP 486, pp.230-242, 1971
  4. J. R. Rice, Mechanics of crack tip deformation and extension by fatigue, in Fatigue Crack Propagation, ASTM STP 415, pp.247-311, 1967
  5. L.F. Coffin, A study of the effect of cyclic thermal stresses on a ductile metal, Trans. ASME, Vol. 76, pp.931-950, 1954
  6. S. S. Manson, Behavior of materials under conditions of thermal stress, Heat Transfer Symposium, University of Michigan Engineering Research Institute, pp.9-53, 1953
  7. F. Ellyin and D. Kujawski, The energy based fatigue failure criterion, Microstructure and Mechnical Behavior of Materials, Vol. 2, pp.541-600, 1986
  8. J. H. Kim and D. H. Kim, Low cycle fatigue life prediction of HSLA steel using total strain energy density, KSPE, Vol. 19, pp.166-175, 2002
  9. B. Budiansky and J. W. Hutchinson, Analysis of closure in fatigue crack growth, J. appl. Mech. 45, pp.267-276, 1978 https://doi.org/10.1115/1.3424286
  10. S. X. Wu, Y. W. Mai and B. Cotterell, A model of fatigue crack based on Dugdale model and damage accumulation, Int. J. Fracture 57, pp.253-267, 1992
  11. J. K. Kim and B. H. Park, Effect of single overload on retardation behavior in 7075-T73 aluminum alloy, Proceeding of the KSME/JSME Joint Conference, pp.532-357, 1990
  12. K. Donard, P. C. Paris, An evaluation of ${\Delta}K_{eff}$ estimation procedures on 6061-T6 and 2024-T3 aluminum alloys, Int. J Fatigue 21, pp.47-57, 1999 https://doi.org/10.1016/S0142-1123(99)00055-9
  13. L. P. Borrego, J. M. Ferreira, J. M. Costa, Fatigue crack growth and crack closure in an AlMgSi alloy, Fatigue Fract Engng Mater Struct 24, pp.255-165, 2001 https://doi.org/10.1046/j.1460-2695.2001.00389.x
  14. L. P. Borrego, J. M. Ferreira, J. M. Pinho da Cruz, J. M. Costa, Evaluation of overload effects on fatigue crack growth and closure, Engng Fract Mechanics,(in press) 2002