DOI QR코드

DOI QR Code

혼합층에서 속도비 변화에 따른 입자확산 유동해석

Numerical Analysis of the Particle Dispersion by the Variation of the Velocity Ratio in a Mixing Layer

  • 발행 : 2003.04.01

초록

난류혼합층에서 속도비 변화에 따른 입자의 운동형태에 대하여 수치해석적 연구를 수행하였다. Turbulent closure를 목적으로 Subgrid모델을 바탕으로 한 LES를 적용하여고 입자 운동을 해석하기 위해 Lagrangian 방법을 적용하였다. 입자의 직경이 10, 50, 100, 150, 200${\mu}m$인 입자들이 분리판 끝단에서 정지한 상태로 혼합층에 유입이 되고, 큰-크기 와류구조에 영향을 받아 혼합층 내로 확산이 되어진다. 혼합층의 성장특성은 속도비 변화에 매루 민감하여, 입자의 확산은 혼합층의 속도비와 입자 직경의 변화에 따라 거동을 달리함을 알 수 있었다. 또한 Stokes 수와 입자확산의 관계를 나타내었다. 그 결과로 St~1인 경우 입자의 확산이 유동장의 확산보다 빠르게 일어나나, St<<1과 St>>1인 경우는 입자의 확산이 잘 일어나지 않음을 알 수 있다.

The particle dispersion in the turbulent mixing layer has been numerically investigated to clarify the effect of the velocity ratio in the large-scale vortical structures. In this study the LES with subgrid-scale model is employed. The Lagrangian method to predict the particle motion is applied. The particles of 10, 50, 150, 200${\mu}m$ in mean diameter were loaded into the origin of the mixing layer. It is shown that the characteristics of flow and growth rate are strongly dependent on the variation of the velocity ratio. It is also shown the relationship between the Stokes number and the particle dispersion. As a result, in the case of St~1 the particle dispersion is faster than the diffustion of the flow field while in the cases of both St<<1 and St>>1 it is shown that the particle dispersion in lower than the diffusion of the flow filed.

키워드

참고문헌

  1. Brown, G.L. and Roshko, A., "On Density Effects and Large Structures in Turbulent Mixing Layer", J. Fluid Mech., vol. 64, 1974, pp. 775-816. https://doi.org/10.1017/S002211207400190X
  2. Winant, C.D. and Browand, F.K., "Vortex Pairing: The mechanism of Turbulent Mixing Layer Growth at Moderate Reynolds Number", J. Fluid mech., vol. 63, 1974, pp. 237-255. https://doi.org/10.1017/S0022112074001121
  3. Chein, R. and Chung, J.N., "Effects of Vortex Pairing on Particle Dispersion in Turbulent Shear Flow", Int. J. of Multiphase Flows, vol. 13, 1987, pp. 785-802 https://doi.org/10.1016/0301-9322(87)90066-8
  4. Chein, R. and Chung, J.N., "Simulation of Particle Dispersion in a Two-Dimensional Mixing Layer", AIChE Jnl., vol. 34, 1988a, pp. 946-954 https://doi.org/10.1002/aic.690340607
  5. Wen, F., Kamalu, N., Chung, J.N., Crowe, C.T. and Troutt, T.R., "Particle Dispersion by Vortex Structures in Plane Mixing Layers", J. of Fluid Engr. vol. 114, 1992, pp. 657-666 https://doi.org/10.1115/1.2910082
  6. Ory, E. and Perkins, R.J., "Numerical Study of Particle Motion in a Turbulent Mixing Layer Using the Discrete Votex Method", 11th Symosium on Turbulent Shear Flows in France, 1997
  7. Tang, L., "Simulation of Multiphase Free Shear Layers", Ph. D. Dissertation, Washington State University, 1990
  8. Wang, H.Y., Zhang, H.Q., Wang, X.L., "Investigation of Vortex-Particle Interaction in Mixing Layer Using Two-way Coupling Vortex Method", International Conference of ISFMFE, Beijing, China, 2000.
  9. Nititopoulos, D.E. and Liu, J.T.C., "Nonlinear Binary-mode Interaction in a Developing Mixing Layer", J. Fluid Mech., vol. 179, 1987, pp. 345-370. https://doi.org/10.1017/S0022112087001563
  10. Yang, Y., Chung, J.N., Troutt, T.R., and Crowe, C.T., "The Influence of Particles on the Spatial Stability of Two-Phase Mixing Layer", Phys. Fluids A, vol. 2, 1990, pp. 1839-1845. https://doi.org/10.1063/1.857657