모단피의 PC12 cell 항산화 효과와 관련 HO, MIF, COMT 유전자 발현에 미치는 영향

Effect of Moutan Cortex Radicis on Gene Expression Profile of Differentiated PC12 Rat Cells Oxidative-stressed with Hydrogen Peroxide

  • 손무성 (경희대학교 한의과대학 생리학교실) ;
  • 노삼웅 (경희대학교 한의과대학 생리학교실) ;
  • 고은정 (경희대학교 한의과대학 생리학교실) ;
  • 나영은 (퓨피메드(주) 기업부설연구소) ;
  • 배현수 (경희대학교 한의과대학 생리학교실, 퓨피메드(주) 기업부설연구소) ;
  • 홍무창 (경희대학교 한의과대학 생리학교실) ;
  • 신민규 (경희대학교 한의과대학 생리학교실)
  • Son Mu Song (Department of Physiology, College of Oriental Medicine, Kyunghee University) ;
  • Rho Sam Woong (Department of Physiology, College of Oriental Medicine, Kyunghee University) ;
  • Ko Eun Jung (Department of Physiology, College of Oriental Medicine, Kyunghee University) ;
  • Na Youn Gin (Purimed R&D Institute) ;
  • Bae Hyun Su (Department of Physiology, College of Oriental Medicine, Kyunghee University, Purimed R&D Institute) ;
  • Hong Moo Chang (Department of Physiology, College of Oriental Medicine, Kyunghee University) ;
  • Shin Min Kyu (Department of Physiology, College of Oriental Medicine, Kyunghee University)
  • 발행 : 2003.08.01

초록

Oriental medicine explains aging as the weakening of Kidney-ai, and Kidney-strengthening herbal medicines such as Yukmijihwang-tang have been studied for anti-aging effects. In Western Medicine, the hypothesis that reactive oxidant species(ROS) contribute to the aging process is generally accepted. It has been reported that Moutan Cortex Radicis extract (MCR) was the most effective constituent of Yukmijihwang-tang in decreasing ROS production in oxidative-stressed cells. The purpose of this study is to confirm the anti-oxidant effect of MCR on PC12 cells, the expression of Heme oxygenase (HO), Macrophage migradon inhibitory factor (MIF), Catechol-O-methyltransferase (COMT) using real time RT PCR. PC12 cells were treated without or with hydrogen peroxide in the presence or absence of MCR using MTS assay. Hydrogen peroxide decreased the viability of PC12 cells by 53% and MCR did not influence that of stressed PC 12 cells irrespective of dose or incubation period. However, MCR showed an inhibitory effect on production of ROS in stressed cells, both dose and incubation time dependently. In particular, 1 ㎎/㎖ of MCR for 24 h culture almost returned to normal level. In the quantiation of anti-aging related gene expression, MCR at 1 ㎎/㎖ increased the expression of HO by 370%, MIF by 180% and COMT by 280% through real time RT PCR. In conclusion, MCR treatment protected PC12 cells from hydrogen peroxide and decreased ROS production and enhanced anti-oxidative gene expression such as HO, COMT and MIF, which suggests that MCR is involved in controlling anti-aging of nerve cells through elimination of cytotoxic stimuli.

키워드

참고문헌

  1. 노인간호학 송미순;하양
  2. 靈樞經校釋 (下) 하북의학원 校釋
  3. 黃帝內經素問今釋 王琦;李炳文;邱德文;王慶基;彭榮琛 編著
  4. Mutat Res. v.275 no.3-6 Free Radical theory of aging. Harman,D. https://doi.org/10.1016/0921-8734(92)90030-S
  5. 대전대논문집 v.8 no.1 숙지황과 육미지황탕이 노화과정 흰쥐에서의 항산화 기전에 미치는 영향 안상원;이철완
  6. 동의생리병리학회지 v.16 no.5 六味地黃湯加味方이 흰쥐의 기억능력과 중추신경계 유전자 발현에 미치는 영향 최보업
  7. 동의생리병리학회지 v.17 no.1 六味地黃湯 構成藥物이 PC12 細胞의 酸化抑制에 미치는 影響 서영은;이은아;배현수;신민규;홍무창
  8. 동의생리병리학회지 v.17 no.2 牡丹皮의 PC12 cell 酸化抑制 效果 및 neuronal 유전자 발현 profile 分析에 대한 연구 김현희 외
  9. J Neurosc Res. v.53 no.6 Lysophosphatidic Acid and Apoptosis of nerve Growth Factor-differentiated PC-12 cells. Holtsberg,F.W.;Steiner,M.R.;Bruce-Keller,A.J.;Keller,J.N.;Mattson,M.P.;Moyers,J.C.;Steiner,S.M.
  10. 한약(생약)규격집 한국의약품수출입협회 한국의약품시험연구소
  11. Neurosci Lett. v.292 no.1 novel acetylcholinesterase inhibitor, attenuates hydrogen peroxide-induced injury in PC12 cells. Hai Y.Z.;Xi C.T.;Huperzine B.A. https://doi.org/10.1016/S0304-3940(00)01433-6
  12. 리정복;장수학
  13. 생명공학동향 v.62 no.989 노화억제를 위한 항산화제 연구 김종평;유익동
  14. 생명과학동향 v.62 no.989 노화과정에서 활성산호의 역할 한복기
  15. 고려의학 成人病·老人病學 徐舜圭
  16. 대전대논문집 v.8 no.1 노화과정의 흰쥐에서 보신환이 신장의 대사효소계에 미치는 영향 손민성;오민석;송태원
  17. 대한한의학회지 v.16 no.2 좌귀음(左歸飮)과 우귀음(右歸飮)이 노화 Rat의 뇌 과산화지질 생성 및 활성산호 생성계 효소 활성에 미치는 영향 윤철호;정지천;박선동
  18. 동의정신과학화지 v.10 no.1 五子地黃飮子가 노화백서의 혈청변화와 혈청·뇌조직의 황산화활성에 미치는 영향 서경석;이상룡
  19. 본초학 전국한의과대학 본초학교실 공저
  20. 한약약리학 김호철
  21. Yao Xue Xue Bao v.29 no.2 Anti-ischemia reperfusion damage and anti-lipid peroxidation effects of paeonol in rat heart. Zhang,W.G.;Zhang,Z.S.
  22. Zhongguo Yao Li Xue Bao v.9 no.6 Inhibitory effects of paeonol on experimental atherosclerosis and platelet aggregation of rabbit. Shi, L.;Fan,P.S.;Fang,J.X.;Han,Z.X.
  23. Thromb Rex Suppl. v.31 no.1 Studies on the mechanism of antiaggregatory effect of Moutan Cortex. Hirai,A.;terano,T.Hamazaki,T.;Sajiki,J.;Saito,H.;Tahara,K.;Tamura,Y.;Kumagai,A. https://doi.org/10.1016/0049-3848(83)90005-1
  24. Yakugaku Zasshi v.92 no.6 Pharmacological studies on the root bark of Paeonia moutan II. Anti-inflammatory effect, preventive effect on stress-induced gastric erosion, inhibitory effect on gastric juice secretion and other effects of paeonol. Harada,M.;Yamashita,A.;Aburada,M.; https://doi.org/10.1248/yakushi1947.92.6_750
  25. 한국전통의학지 v.7 no.2 牡丹皮가 Collagen 유발 관절염에 미치는 영향 김동혁;송봉근;김형균
  26. Zhongguo Zhong Xi Yi Jie He Za Zhi v.14 no.1 A study of paeonol injection on immune functions in rats. Li,F.C.;Zhou,X.L.;Mao,H.L.
  27. Nat Cell Biol. v.3 no.8 DNA microarrays and beyond:completingthe journey from tissue to cell. Mills,J.C.;Roth,K.A.;Cagan,R.L.;Gordon,J.I. https://doi.org/10.1038/35087108
  28. Comp Biochem Physiol C Toxicol Pharmacol. v.131 no.2 Enhanced heme oxygenase activity increases the antioxidant defense capacity of guinea pig liver upon acute cobalt chloride loading:comparison with rat liver. Christova,T.Y.;Duridanova,D.B.;setchenska,M.S. https://doi.org/10.1016/S1532-0456(01)00287-3
  29. Adv Exp Med Biol. v.502 The heme oxygenase system and cellular defense mechanisms. Do $HO^{-1}$ and $HO^{-2}$ have different functions?. Maines,M.D.;Panahian,N. https://doi.org/10.1007/978-1-4757-3401-0_17
  30. Jpn J Pharmacol v.88 no.2 Fundamental role of heme oxygenase in the protection against ischemic acute renal failure. Akagi R.;Takahashi T.;Sassa S. https://doi.org/10.1254/jjp.88.127
  31. Transplantation v.74 no.7 Heme oxygenase-1 system in organ transplantation. Katori,M.;Busuttil,R.W.;Kupiec-Weglinski,J.W. https://doi.org/10.1097/00007890-200210150-00001
  32. Am J Respir Cell Mol Biol. v.27 no.1 Heme oxygenase-1:the "emerging molecule: has arrived. Morse,D.;Choi,A.M. https://doi.org/10.1165/ajrcmb.27.1.4862
  33. DNA Cell Biol. v.21 no.4 Heme oxygenase and the kidney. Hill-Kapturczak,N.;Chang,S.H.;Agarwal,A. https://doi.org/10.1089/104454902753759726
  34. Life Sci v.69 no.25-26 Modulation of heme oxygenase in tissue injury and its implication in protection against gastrointestinal diseases Guo,X.;Shin,V.Y.;Cho,C.H. https://doi.org/10.1016/S0024-3205(01)01417-5
  35. Journal of endotoxin research v.7 no.6 Macrophage migration inhibitory factor (MIF) modulates innate immune reponses induced by endotoxin and Gram-negative bacteria. Roger,T.;Glauser,M.P.;Calandra,T. https://doi.org/10.1177/09680519010070061101
  36. Microbes and infection v.4 no.4 Macrophage migration inhibitory factor (MIF):mechanisms of action and role in disease. Lue H.;Kleemann R.;Calandra T.;Roger T.;Bernhagen J. https://doi.org/10.1016/S1286-4579(02)01560-5
  37. Crit Care Med. v.30 no.1 Suppl Macrophage migration inhibitory factor. Baugh,J.A.;Bucala,R. https://doi.org/10.1097/00003246-200201001-00004
  38. Curr Opin Pharmacol. v.1 no.6 Glucocorticoid counter regulation:microphage migration inhibitory factor as a target for drug discovery. Lolis,E. https://doi.org/10.1016/S1471-4892(01)00112-6
  39. Hokkaido Igaku Zasshi v.72 no.4 Identification of macrophage migration inhibitory factor (MIF) in rat spinal cord and its kinetics on experimental spinal cord injury. Fujimoto S.
  40. J Neurochem v.77 no.3 Protection of intracellular dopamine cytotoxicity by dopamine disposition and metabolism factors. Weingarten,P.;Zhou,Q.Y. https://doi.org/10.1046/j.1471-4159.2001.00263.x
  41. Eur J Neurosci v.15 no.2 Brain catecholamine metabolism in catechol-O- methyltransferase (COMT)-deficient mice. Huotari,M. et al https://doi.org/10.1046/j.0953-816x.2001.01856.x
  42. Toxicology v.177 no.1 Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s. Pattison,D.I.;Dean,R.T.;Davies,M.J. https://doi.org/10.1016/S0300-483X(02)00193-2