아연폐광지역 오염토양에 대한 토양개량제 처리가 구절초와 층꽃나무의 생육에 미치는 영향

Effect of Soil Conditioners for Contaminated Soil of Abandoned Zinc Mine Area on Growth of Chrysanthemum zawadskii and Caryopteris incana(Tunb) Miq

  • 박은아 (서울여자대학교 원예학과) ;
  • 최영 (서울여자대학교 원예학과) ;
  • 이상각 ((주)유니모 농원) ;
  • 장매희 (서울여자대학교 원예학과)
  • 발행 : 2003.12.01

초록

본 연구는 아연폐광지역의 토양에 토양개량제를 처리한 후 구절초와 층꽃나무의 생장반응을 연구함으로서 생태계 복원을 위한 기초자료를 얻고자 실시하였다. 아연폐광지의 토양은 유기물 함량ㅇ이 낮았고, 토양 중 중금속 이온은 Zn의 함량이 가장 높았고 Pb, Cu, Cd순이었다. 아연폐광지역 토양에 슬러지 처리 시 유기물 함량이 가장 높았고, 중금속 이온 함량은 토양개량제 초리구간의 차이가 적었다. 생육반응을 보면 구정초와 층꽃나무 모두 슬러지 처리구의 효과가 나타났다. 구절초와 층꽃나무의 가용성 단백질, 엽록소 함량, 엽록소 형광 반응은 슬러지 처리구에서 가장 높았고, 광함성량과 증산량도 슬러지 처리구에서 높았다. 중금속 축적량은 구절초는 슬러지 처리구에서 낮았던 반면 층꽃나무는 슬러지 처리구에서 높았다.

This study was cnducted ton investigate the effect of soil conditioner such as dolomite, slkudge and organic manure on changes of soil chemical properties of abandoned zinc mine area. Growth responses of Chrysanthemum azwadskii and Caryopteris incana (Tunb) Miq affected by the appication were also determined. In thejsoil of abandoned zinz mine area, total heavy metal contents espectially Cd, Cu, Pb and Zn were high and organic matter contents was low. Application of sludge for phytoremediation resulted in higher soil organic content that other treatments tested. Heavy metal concentrations after application of soil conditioners were not different among treatments. The growth of C. zawadskii and C. incana (Tunb) Miq were significantly higher in sludge treatment than those in other treatments The cholrophyll content, chlorophyll flouorescence, protein content, photosynthetic rate and transpiration were high in sludge treatment. The heavy metal contents of C. zawadskii were the lowest in sludge treatment while those of C. incana (Tunb) Miq was the highest in sludge treatment.

키워드

참고문헌

  1. Baishnab, C.T. and P. Mohanty 1980. Zinc-inhibited electron transport of photosynthesis in isolated barley chloroplasts. Plant Physiol. 66:1174-1178 https://doi.org/10.1104/pp.66.6.1174
  2. Baker, A.J.M. 1981. Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutri. 3:643-654 https://doi.org/10.1080/01904168109362867
  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chen, H.M., C.R. Zheng, C. Tu, and Z.G. Shen. 2000. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229-234 https://doi.org/10.1016/S0045-6535(99)00415-4
  5. Choi, M.K. and M.H. Chiang. 2003a. Soil conditioner treatment and growth responses of Artemisia princeps and Helianthus annuus for ecological restoration in abandoned zinc mine area. Kor. J. Hort. Sci. Technol. 21:447-450
  6. Choi, M.K. and M.H. Chiang, 2003b. Physiological and biochemical responses, and heavy metal accumulation of Artemisia princeps and Helianthus annuus in the abandoned zinc mine area for phytoremediation. Kor. J. Hort. Sci. Technol. 21:451-456
  7. Grill, E., E.L. Winnacker, and M.H. Zenk. 1985. Phytochelatins : The principal heavy metal corrplexing peptides of high plants. Science 230:674-676 https://doi.org/10.1126/science.230.4726.674
  8. Huh, M.R, J.S. Choi, H.T. Shin, D.W. Shin, and J.C. Park. 2002. Effects of newly developed inorganic substrate from sludge on the growth of pot flower of Celosia cristata and Salvia splendens. J. Kor. Soc. Hort. Soc. 43:249-254
  9. Kate, M. and G.N. Johnson. 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51:659-668 https://doi.org/10.1093/jexbot/51.345.659
  10. Kim, J.G. and S.H. Lee, 1999. Phytoremediation. Proc. 30th Symp. on 'Remediation-technology and prospect'. Kor. Soc. Environ. Agr. 57-88
  11. Kim, J.G., S.K. Kim, S.H. Lee, C.H. Lee, and C.C. Jeong. 1999. Evolution of heavy metal pollution and plant survey around inactive and abandoned mining areas for phytoremediation of heavy metal contaminated. Kor. J. Environ. Agr. 18:28-34
  12. Kim, J.G., H.S. Moon, Y.G. Song, and J.H. Yoo. 1999. Chemical forms of heavy metals elements in mine wastes, stream sediments and surrounding soils from the Gubong mine. Kor. Econ. Environ. Geol. 32:261-271
  13. Lee, S, G., B.M. Lee, H.S. Lee, and G.K. Bae. 1998. Effect of salt stress on protein content, ATPases and peroxidase activities in tobacco. Kor. J. Environ. Agri. 17:296-300
  14. Martinez, C.E. and H.L. Motto. 2000. Solubility of lead, zinc and copper added to mineral soils. Environ. Poilu. 107:153-158 https://doi.org/10.1016/S0269-7491(99)00111-6
  15. Meagher, R.B. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opinion Plant Biol. 3:153-162 https://doi.org/10.1016/S1369-5266(99)00054-0
  16. Nedelkoska, T.V. and P.M. Doran. 2000. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Min. Eng. 13:549-561 https://doi.org/10.1016/S0892-6875(00)00035-2
  17. Ruano, A., J. Barcelo, and C. Poschenrieder. 1987. Zinc toxicity induced variation of mineral element composition in hydroponically grown bush bean plants. J. Plant Nutr. 10:373-384 https://doi.org/10.1080/01904168709363579
  18. Ryu, S.H., K.J. Roh, S.M. Lee, M.U. Park, and G.H. Kim. 1996a. Distribution of cadmium, copper, lead, and zinc in paddy soils around an old zinc mine. Kor. J. Soil Sci. & Fer. 29:424-431
  19. Ryu, S.H., K.J. Roh, S.M. Lee, M.U. Park, and G.H. Kim. 1996b Characterization of heavy metals in the stream sediment around an old zinc mine. Kor. J. Soil Sci & Fer. 29:432-438.
  20. Stephen, D.E. and V.K. Leon. 1997. Toxicity of zinc and copper to brassica species: Implications for phytoremediation. J. Environ. Qual. 26:776-781 https://doi.org/10.2134/jeq1997.00472425002600030026x
  21. Terry, N. and G. Banuelos. 2000. Phytoremediation of contaminated soil and water. pp.85-107. CRC Press, Boca Raton, FL, USA
  22. Wild, A. 1993. Soils and the environment An introduction. pp.189-210. Cambridge Univ. Press, Cambridge, UK