DOI QR코드

DOI QR Code

Statistical Characteristics of Polarization - Sensitive Optical Coherence Tomography for Tissue Imaging

  • Oh, Jung-Taek (Institute for Medical Engineering, Yonsei Univ.) ;
  • Kim, Beop-Min (Department of Biomedical Engineering, Yonsei Univ.) ;
  • Kim, Seung-Woo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2003.10.07
  • Published : 2003.12.01

Abstract

Statistical characteristics of the backscattered light from turbid tissues obtained by polarizationsensitive optical coherence tomography are investigated. The amplitude of the backscattered light is found to faithfully follow the Rayleigh distribution predicted by the scattering theory of electromagnetic waves in random media. The probability density function of the phase difference between the two orthogonal polarization components of the backscattered light is explicitly derived and then verified in comparison with the experimental data measured from in-vitro tissues of porcine ligament.

Keywords

References

  1. D. Huang, E. A. Sawnson, C.P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science, vol. 254, issue 5035, pp. 1178-1181, 1991 https://doi.org/10.1126/science.1957169
  2. J. F. de Boer, T. E. Milner, and J. S. Nelson, 'Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by the use of polarization-sensitive optical coherence tomography,' Opt. Lett., vol. 24, no. 5, pp. 300-302, 1999 https://doi.org/10.1364/OL.24.000300
  3. K. Schoenenberger, B. W, Colston, D. J. Maitland, D. Silva, and M.J. Everett, 'Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography,' Appl. Opt., vol. 37, no. 25, pp. 6026-6036, 1998 https://doi.org/10.1364/AO.37.006026
  4. S. Jiao, G. Yao, and L. V. Wang, 'Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,' Opt. Lett., vol. 27, no. 2, pp. 101-103, 2002 https://doi.org/10.1364/OL.27.000101
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, and J.S. Nelson, 'Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin.,' Opt. Lett., vol. 27, no. 19, pp. 1702-1704, 2002 https://doi.org/10.1364/OL.27.001702
  6. R. Barakat, 'Statistics of the Stokes parameters,' J. Opt. Soc. Am. A, vol. 4, no. 7, pp. 1256-1263, 1987 https://doi.org/10.1364/JOSAA.4.001256
  7. R. Touzi and A. Lopes, 'Statistics of the Stokes Parameters and of the Complex Coherence Parameters in One-Look and Multilook Speckle Fields,' IEEE Trans. Geosci. Remote Sensing, vol. 34, no. 2, pp. 519-531, 1996 https://doi.org/10.1109/36.485128
  8. J. M. Schmitt and S. H. Xiang, 'Cross-polarized backscattering in optical coherence tomography of biological tissue,' Opt. Lett., vol. 23, no. 13, pp. 1060-1062, 1998 https://doi.org/10.1364/OL.23.001060
  9. S. Jiao, G Yao and L.V. Wang, 'Depth-resolved two-dimensional Stokes vectors of backscattered light and Muller matrices of biological tissue measured with optical coherence tomography,' Appl. Opt., vol. 39, no. 34, pp. 6218-6324, 2000 https://doi.org/10.1364/AO.39.006318
  10. J. M. Schmitt and G. Kumar, 'Turbulent nature of refractive-index variations in biological tissue,' Opt. Lett., vol. 21, no. 16, pp. 1310-1312, 1996 https://doi.org/10.1364/OL.21.001310
  11. J. W. Goodman, 'Some fundamental properties of speckle', J. Opt. Soc. Am., vol. 66, pp. 124-127, 1976 https://doi.org/10.1364/JOSA.66.001145
  12. L. Mandel and E. Wolf, Optical coherence and quantum optics, (Cambridge, New York, 1995)
  13. J. S. Bendat and A.G. Piersol, Random data: analysis and measurement procedure 3rd Ed, (John Wiley and Sons, New York, 2000) pp. 103-105