Browse > Article
http://dx.doi.org/10.3807/JOSK.2003.7.4.211

Statistical Characteristics of Polarization - Sensitive Optical Coherence Tomography for Tissue Imaging  

Oh, Jung-Taek (Institute for Medical Engineering, Yonsei Univ.)
Kim, Beop-Min (Department of Biomedical Engineering, Yonsei Univ.)
Kim, Seung-Woo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of the Optical Society of Korea / v.7, no.4, 2003 , pp. 211-215 More about this Journal
Abstract
Statistical characteristics of the backscattered light from turbid tissues obtained by polarizationsensitive optical coherence tomography are investigated. The amplitude of the backscattered light is found to faithfully follow the Rayleigh distribution predicted by the scattering theory of electromagnetic waves in random media. The probability density function of the phase difference between the two orthogonal polarization components of the backscattered light is explicitly derived and then verified in comparison with the experimental data measured from in-vitro tissues of porcine ligament.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Huang, E. A. Sawnson, C.P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science, vol. 254, issue 5035, pp. 1178-1181, 1991   DOI
2 J. F. de Boer, T. E. Milner, and J. S. Nelson, 'Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by the use of polarization-sensitive optical coherence tomography,' Opt. Lett., vol. 24, no. 5, pp. 300-302, 1999   DOI
3 K. Schoenenberger, B. W, Colston, D. J. Maitland, D. Silva, and M.J. Everett, 'Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography,' Appl. Opt., vol. 37, no. 25, pp. 6026-6036, 1998   DOI
4 S. Jiao, G. Yao, and L. V. Wang, 'Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,' Opt. Lett., vol. 27, no. 2, pp. 101-103, 2002   DOI
5 J. M. Schmitt and G. Kumar, 'Turbulent nature of refractive-index variations in biological tissue,' Opt. Lett., vol. 21, no. 16, pp. 1310-1312, 1996   DOI
6 Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, and J.S. Nelson, 'Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin.,' Opt. Lett., vol. 27, no. 19, pp. 1702-1704, 2002   DOI
7 R. Barakat, 'Statistics of the Stokes parameters,' J. Opt. Soc. Am. A, vol. 4, no. 7, pp. 1256-1263, 1987   DOI
8 J. M. Schmitt and S. H. Xiang, 'Cross-polarized backscattering in optical coherence tomography of biological tissue,' Opt. Lett., vol. 23, no. 13, pp. 1060-1062, 1998   DOI   ScienceOn
9 R. Touzi and A. Lopes, 'Statistics of the Stokes Parameters and of the Complex Coherence Parameters in One-Look and Multilook Speckle Fields,' IEEE Trans. Geosci. Remote Sensing, vol. 34, no. 2, pp. 519-531, 1996   DOI   ScienceOn
10 S. Jiao, G Yao and L.V. Wang, 'Depth-resolved two-dimensional Stokes vectors of backscattered light and Muller matrices of biological tissue measured with optical coherence tomography,' Appl. Opt., vol. 39, no. 34, pp. 6218-6324, 2000   DOI
11 J. S. Bendat and A.G. Piersol, Random data: analysis and measurement procedure 3rd Ed, (John Wiley and Sons, New York, 2000) pp. 103-105
12 J. W. Goodman, 'Some fundamental properties of speckle', J. Opt. Soc. Am., vol. 66, pp. 124-127, 1976   DOI
13 L. Mandel and E. Wolf, Optical coherence and quantum optics, (Cambridge, New York, 1995)