DOI QR코드

DOI QR Code

Prediction Model of Remaining Service Life of Concrete for Irrigation Structures by Measuring Carbonation

중성화 측정을 통한 콘크리트의 잔존수명 예측 모델

  • Published : 2003.08.01

Abstract

Recently, the researches on the durability design of concrete structures have been studied. As the examples, models to evaluate the service life prediction of the structure have been developed. The purpose of this article is to develop the model for predicting remaining service life. The final aim is to provide the user time for repairing the concrete structures. In addition, it makes possible to maintain the concrete structure economically. 70 reservoirs out of the inland concrete structures were selected and concrete structures of their components were surveyed. Two methods were used for measuring carbonation; TG/DTA method and Phenolphtalein indicator and, the value of pH was measured by the pH meter, After deriving correlations of calcium carbonate and used year, duration from completion year to 2002, pH value, and concrete cover depth the model was developed for predicting remaining service life by measuring data as small as possible. The conventional models had been developed on the basis of experiment data obtained from the restricted lab environment like as carbon gas exposure. On the other hand this model was developed on the basis of measuring data obtained from the real field that the complex deterioration actions are occurred such as freezing and thawing, carbonation, steel corrosion, and so on. The reliability of the developed model will be evaluated high in this point and this model can help to maintain concrete structures economically by providing the manager time to repair the deteriorated concrete structures in site of facility management.

최근 콘크리트 내구성설계에 관한 연구가 활발히 진행되고 있으며, 사용수명 예측이 핵심인 내구성 평가모델 개발이 그 좋은 예이다. 본 연구에서는 콘크리트 구조물의 잔존수명예측 모델을 개발하여 적정시기의 유지보수를 통한 경제적 구조물 사용을 목적으로 하였다. 육지 콘크리트 구조물인 저수지의 콘크리트 구조물 부분을 대상으로 전국 70개 지구를 선정하고, TG/DTA 법과 페놀프탈레인 지시약법으로 중성화를, pH메타법으로 pH 값을 측정하여 탄산칼슘함량 대비 사용연수, pH값, 콘크리트 피복 두께의 관계함수를 각각 유도한 후 가능한 최소의 자료측정으로 잔존수명을 예측할 수 있는 모델을 개발하였다. 개발된 잔존수명예측 모델은 탄산가스등의 고정변수에 의한 실내촉진실험 자료기반 모델과 달리 동결융해작용, 중성화, 철근 부식 등 복합적인 열화작용이 동시에 일어나는 현장의 환경적 영향을 받은 구조물에서 측정한 자료를 기반으로 개발되었다. 이러한 점에서 그 신뢰성을 높게 평가 받을 수 있을 것이며, 시설물 유지관리자에게 적정 보수보강 시점을 제공하여 경제적인 구조물 사용에 도움을 줄 수 있을 것으로 판단된다.

Keywords

References

  1. 콘크리트 표준시방서, 건설교통부, 1999, pp.30
  2. Nevile, 'Properties of Concrete,' Ritman, Toronto, 1981, pp.359-528
  3. Tuutti, K., 'Corrosion of Steet in Concrete,'Swedish Cement and Concrete Research Institute,Stockholm, 1982
  4. 岸谷孝一等,'中性化(コンクリ-ト構造物 の耐久性シリス)',技報堂,1988, pp.21-40
  5. Browne, R.D., 'Med-msms of Corrosion of SteeI inConcrete in Relation to Design, Inspection, and Repair of Qffshore and Coastal Structures,' In Perfor-mance of Concrete in Marine Environment, ed. V.M. Malhotra. ACI Publication SP-65, 1980, pp.169-204
  6. S. Feliu, J. A. Gonzalez, S. feliu, Jr., and M. C. Andrade, 'ConSnement of the Electrical Signal for in Situ Measurement of Polahzation Resistance in Reinforced Concrete,' Materials Journal, Vol. 87, September-October, 1990, pp.457-460
  7. Charles J. Hookham, 'Service Life Prediction of Concrete Structures-Case Histories and Research Needs,' Concrete Intemational, Vol. 14, November,1992, pp.50-53
  8. James R. Clifton, 'Predicting the Service Life of Concrete' Materials Journal, Vol. 90, November-December, 1993, pp.611-617
  9. James R. Clifton, 'Predicting the Remaining Service Life of Concrete' NISTIR 4712, National Institute of Standards and Technology, Nov. 1991, 24pp
  10. Pourbaix M., 'Atlas of EIectrochemiccil Equilibria in Aqueous Solutions,' Pergamon Press, Qxford, 1966, pp.307-321
  11. Weyers, R.E 'Seruice Life Estimates (SHRP-S-668),' Strategic Highway Research ProgramNational Research Council, 1993
  12. S. K. Roy, K.B Poh, D.O Northwood 'durability of concrete - accelerated carbonation and weathering studies,' Building and Environment 34 1999, pp.597-606, pp.57-60 https://doi.org/10.1016/S0360-1323(98)00042-0
  13. ACI. 201.2R-11-12, chap. 2, 1992
  14. 이종득, '콘크리트 구조물의 조기열화 내구성 진단',도서출판일광, 1996, pp.120-137
  15. Shalon, R. & Raphael, M., 'Influence of Sea Water on Corrosion of Reinforcement,' J. of Am Concrete Inst., 30(12),1959, pp.1251-1268
  16. A Bentur, S. Diamond and N.S. Berke, 'SteelCorrosion in Concrete,' E&FN SPON, 1997, pp.41-49, 158
  17. P. J. Parrott, 'Design for Avoiding Damage Due toCarbonadon-Induced Corrosion (SP-145)' Vol. 145,pp.283-298
  18. D. C. Killoh, L. J. Parrott, and R. G. PatelI,'Influence of Curing at Diferent RelativeHumidities on the Hydrotion and Porosity of a PortIand/Flyash Cement Paste (SP-114),' Vol.114. Special publication, May, 1989, pp.157-174
  19. 김영의, '콘크리트의 강도, 중성화, 화재손상부 비파괴검사 방법', 콘크리트 학회지 제10권 2호,1998, pp.50-64
  20. 정우용외 3인, '철근부식에 의한 육지 콘크리트 잔존수명 예측', 콘크리트 학회논문집 제12권 5호 2000, pp.69-80
  21. 김도겸, '콘크리트 구조물의 사용수명 평가 프로그램개발', 건설기술정보. 2001, pp.9-17
  22. 박성계, '열분석기의 원리 및 응용', 울산대학교, 공동기기 센터 1998
  23. 이준구외 4인, '콘크리트의 사용연한에 따른 중성화진행에 관한 실험적 연구', 한국농공학회 학술발표회논문집, 2001, pp.123-28
  24. 콘크리트 구조설계기준, 건설교통부, 1999, pp.77-120
  25. 이학렬, '금속부식공학', 연경문화사, 1997
  26. Ali A. Ramezanianpour, A. Tahghat, A. Miyamoto 'Concrete Corbonotion, Modelling and Monte CarIo Simulonon Method for Uncertainty analysis of Stodnstic Front Depth' Mem Fac Eng YamaguchiUniv. Vol.50 No.2, 2000, PP.57-60
  27. V.S. Ramachandran, M. Sc., D.Phil., 'Apphcations of DIFFERENTIAL THERMAL ANALYSIS in Cement Chemstry' CHEMICAL PUBLISHINGCOMPANY, INC NEW YORK, 1969, pp.81-110
  28. G.S.T. Armer, J.L.Clarke, F.K.Garas, 'The life of Structures,' Butterworths, 1989
  29. Tuutti, K, 'Service Life of Structures With Regardto Corrosion of Embedded Steet. In. Performance of Concrete Marine Enuiravnent,' ed. V. MMalhotra, ACI Publication SP-65, 1980, pp.223-36
  30. Fontana, M.G., 'Corrosion Engineering,' McGraw-Hill, 1986

Cited by

  1. A Development of Soundness Evaluation Index for Poor Appearance Distribution Concrete Poles vol.28, pp.9, 2014, https://doi.org/10.5207/JIEIE.2014.28.9.035
  2. The Application of Various Indicators for the Estimation of Carbonation and pH of Cement Based Materials vol.38, pp.5, 2010, https://doi.org/10.1520/JTE102382