Selection of Ozone Tolerant Individuals of Cornus controversa

층층나무의 온존 내성 개체 선발

  • 장석성 (임업연구원 산림유전자원부) ;
  • 이재천 (임업연구원 산림유전자원부) ;
  • 한심희 (임업연구원 산림유전자원부) ;
  • 김홍은 (충북대학교 산림과학부)
  • Published : 2003.03.01

Abstract

This study was conducted to select the ozone tolerant individuals of Cornus controversa Hemsl., and to use malondialdehyde (MDA) content as an indicator of plant damage level for several oxidative stress levels. Seeds of C. controversa were collected at 9 provinces in Korea. One-year-old seedlings were grown in greenhouses and exposed to 100 pub ozone concentration for 8h day$^{-1}$ for 10 weeks. At the termination of ozone exposure, heights of seedlings were measured and MDA contents in the leaves were analyzed. Tolerant, intermediate, and sensitive individuals were selected using the standardized indices of height and MDA content. Height and MDA content of C. controversa exposed to ozone were significantly different among individuals and provinces. MDA content showed negative correlation (r=-0.531, p$\leq$ 0.001) with height growth performance. Height and MDA content of tolerant individuals presented significant differences from those of sensitive individuals. As a result, MDA content may be suitable for the evaluation of the damage level of plants by oxidative stress.

본 연구는 층층나무를 대상으로, 엽 내에서 측정한 MDA 함량을 기준으로 오존 내성 개체를 선발하고자 수행하였다. 또한 각종 오염물질에 대한 내성을 평가 하기 위해 MDA 함량을 이용하는 것이 타당한지를 검토하고자 하였다. 실험에 사용된 층층나무는 오대산(5본), 치악산(5본), 점봉산(5본), 주왕산(1본), 태백산(1본), 지리산(5본), 소리봉(5본), 속리산(4본), 소백산(4본), 계방산(4본) 등 9개 지역에서 채취한 종자를 이용하였으며, 오존 처리는 100 ppb에서 하루 8시간 씩 10주 동안 실시하였다. 오존 처리가 종료된 후, 층층나무의 수고와 MDA 함량을 측정하였고, 수고와 MDA 함량간의 관계를 분석 하였으여, 수고와 MDA 함량의 표준화 지수를 이용하여 오존에 대한 내성그룹, 중간그룹, 민감성그룹을 각각 30개체씩 선발하였다. 오존 처리된 층층나무의 수고와 MDA 함량은 가계간, 지역간 차이를 보여주었으며, MDA 함량은 수고생장과 역상관(r=-0.531, p$\leq$0.001)을 나타냈다. 개체별 수고와 MDA 함량을 기준으로 선발한 층층나무는 내성그룹과 민감성 그룹간 수고와 MDA 함량 차이가 뚜렷하였다. 따라서 MDA 함량은 오존에 대한 내성 및 민감성을 구분하는데 유용하게 이용될 수 있을 것으로 판단된다.

Keywords

References

  1. Asada, K., 1999: The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601-639.
  2. Bergmann, F. and F. Schloz, 1987: The impact of air pollution on the genetic structure of Norway spruce. Sivae Genetica, 36, 80-83.
  3. Cho, U.-H. and J.-O Park, 1999: Changes in hydrogen peroxide content and activities of antioxidant enzymes in tomato seedlings exposed to mercury. Journal of Plant Biology, 42, 41-48.
  4. Davis, D. G. and H. R. Swanson, 2001: Activity of stressrelated enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environmental Experimental Botany, 46, 95-108.
  5. Esterbauer, H. and K. H. Cheeseman, 1990: Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407-421.
  6. Geburek, T., F. Scholz, W. Knabe and A. Vornweg, 1987: Genetic studies by isozyme gene loci on tolerance and sensitivity in an air polluted Pinus sylvestris field trial. Silvae Genetica, 36, 49-53.
  7. Han, S.-H., J.-C. Lee, S.-S. Jang and Y.-P. Hong, 2002: Comparison of the ozone sensitivity of four Betula species based on carbon allocation and partitioning patterns. Journal of Korean Forest Society, 91, 449-456.
  8. Karnosky, D. F., 1988: Air pollution induced population changes in North American forests. Proceedings of the 14th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Interlaken, Switzerland, p. 315-317.
  9. Kim, M. H. and S. W. Lee, 1994: Injury responses of landscape woody plants to air pollutants - malondialdehyde content. Journal of Korean Forest Society, 83, 25-31.
  10. Kiyoshi, T., Y.-G. Shon, S.-H. Lee, H.-Y. Kim, M.-S. Moon and J.-J. Lee, 1999: The response to oxidative stress induced by magnesium deficiency in kidney bean plants. Journal of Plant Biology, 42, 294-298.
  11. Lee, J.-C., S.-H. Han, C.-S. Kim and S.-S. Jang, 2002: Visible foliar injuries and growth responses of four Betula sp. exposed to ozone. Korean Journal of Agricultural and Forest Meteorology, 4, 29-37.
  12. Lee, S. W., S. Y. Woo, Y. B. Koo and S. K. Lee, 1998: Genetic differences between the tolerant and the sensitive trees in an air polluted Prunus sargentii stand. Journal of Korean Forest Society, 87, 74-81.
  13. Oksanen, E., G. Amores, H. Kokko, J. M. Santamaria and L. Karenlampi, 2001: Genotypic variation in growth and physiological responses of Finish hybrid aspen(Populus tremuloides ${\times}$ P. tremula) to elevated tropospheric ozone concentration. Tree Physiology, 21, 1171-1181.
  14. Paakkonen, E., T. Holopainen and L. Karenlampi, 1997: Differences in growth, leaf senescence and injury, and stomatal density in birch(Betula pendula Roth.) in relation to ambient levels of ozone in Finland. Environmental Pollution, 96, 117-127.
  15. Shimazaki, K. and K. Sugahara, 1978: Studies on mechanisms of sulfur dioxide phytotoxicity. I. Effects of sulfur dioxide on photosynthetic electron transport and chlorophyll breakdown in higher plants. Studies on Evaluation and Amelioration of Air pollution by Plants. progress report in 1976-1977. R-2-78, 35-46.
  16. Takahama, U. and M. Nishimura, 1976: Effects of electron donor and acceptors electron transfer mediators, and superoxide dismutase on lipid peroxidation in illuminated chloroplast fragments. Plant and Cell Physiology, 17, 111-118.
  17. Velikova, V., I. Yordanov and A. Edreva, 2000: Oxidative stress and some antioxidant systems in acid rain-treated bean plants - Protective role of exogenous polyamines. Plant Science, 151, 59-66.