Microbial Metabolism of the Environmental Estrogen Bisphenol A

  • Yim, Soon-Ho (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Kim, Hyun-Jung (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Lee, Ik-Soo (College of Pharmacy and Research Institute of Drug Development, Chonnam National University)
  • Published : 2003.10.01

Abstract

Preliminary microbial metabolism studies of bisphenol A (BPA) (1) on twenty six microorganisms have shown that Aspergillus fumigatus is capable of metabolizing BPA. Scale-up fermentation of 1 with A. fumigatus gave a metabolite (2) and its structure was established as bisphenol $A-O-{\beta}-D-glucopyranoside$ (BPAG) based on spectroscopic analyses.

Keywords

References

  1. Brotons, J. A., Olea-Serrano, M. F., Villalobos, M., Pedraza, V., and Olea, N., Xenoestrogens released from lacquer coatings in food cans. Environ. Health Perspect., 103, 608-612 (1995) https://doi.org/10.2307/3432439
  2. Clark, A. M. and Hufford, C. D., Use of microorganisms for the study of drug metabolism: an update. Med. Res. Rev., 11, 473-503 (1991) https://doi.org/10.1002/med.2610110503
  3. Clark, A. M., McChesney, J. D., and Hufford, C. D., The use of microorganisms for the study of drug metabolism, Med. Res. Rev., 5, 231-253 (1985) https://doi.org/10.1002/med.2610050203
  4. Dodds, E. C. and Lawson, W., Synthetic estrogenic agents without the phenanthrene nucleus. Nature, 137, 996 (1936)
  5. Elsby, R., Maggs, J. L., Ashby, J., and Park, B. K., Comparison of the modulatory effects of human and rat liver microsomal metabolism on the estrogenicity of bisphenol A: implications for extrapolation to humans. J. Pharmacol. Exp. Ther., 297, 103-113 (2001)
  6. Farabollini, F., Porrini, S., and Dessi-Fulgherit, F., Perinatal exposure to the estrogenic pollutant bisphenol A affects behavior in male and female rats. Pharmacol. Biochem. Behav., 64, 687-694 (1999) https://doi.org/10.1016/S0091-3057(99)00136-7
  7. Hiroi, H., Tsutsumi, O., Momoeda, M., Takai, Y., Osuga, Y., and Taketani, Y., Differential interactions of bisphenol A and 17b-estradiol with estrogen receptor a (ERa) and ERb. Endocr. J., 46, 773-778 (1999) https://doi.org/10.1507/endocrj.46.773
  8. Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G., and vom Saal, F. S., Environmental toxins: Exposure to bisphenol A advances puberty. Nature, 401, 763-764 (1999) https://doi.org/10.1038/44517
  9. Knaak, J. B. and Sullivan, L. J., Metabolism of bisphenol A in the rat. Toxicol. Appl. Pharmacol., 8, 175-184 (1966) https://doi.org/10.1016/S0041-008X(66)80001-7
  10. Kubo, K., Arai, O., Omura, M., Watanabe, R., Ogata, R., and Aou, S., Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci. Res., 45, 345-356 (2003) https://doi.org/10.1016/S0168-0102(02)00251-1
  11. Lobos, J. H., Leib, T. K., and Su, T. M., Biodegradation of bisphenol A and other bisphenols by a Gram-negative aerobic bacterium. Appl. Environ. Microbiol., 58, 1823-1831 (1992)
  12. Markey, C. M., Luque, E. H., Munoz De Toro, M., Sonnenschein, C., and Soto, A. M., In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol. Reprod., 65, 1215-1223 (2001) https://doi.org/10.1093/biolreprod/65.4.1215
  13. Markey, C. M., Rubin, B. S., Soto, A. M., and Sonnenschein, C., Endocrine disruptors: from Wingspread to environmental developmental biology. J. Steroid Biochem. Mol. Biol., 83, 235-244 (2002) https://doi.org/10.1016/S0960-0760(02)00272-8
  14. Nagel, S. C., vom Saal, F. S., Thayer, K. A., Dhar, M. G., Boechler, M., and Welshons, W. V., Relative binding affinityserum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ. Health Perspect., 105, 70-76 (1997) https://doi.org/10.2307/3433065
  15. Nakagawa, Y. and Suzuki, T., Metabolism of bisphenol A in isolated rat hepatocytes and oestrogenic activity of a hydroxylated metabolite in MCF-7 human breast cancer cells. Xenobiotica, 31, 113-123 (2001) https://doi.org/10.1080/00498250110040501
  16. Nakagawa, Y. and Tayama, S., Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch. Toxicol., 74, 99-105 (2000) https://doi.org/10.1007/s002040050659
  17. Nakajima, N., Ohshima, Y., Serizawa, S., Kouda, T., Edmonds, J. S., Shiraishi, F., Aono, M., Kubo, A., Tamaoki, M., Saji, H., and Morita, M., Processing of bisphenol A by plant tissues: glucosylation by cultured BY-2 cells and glucosylation/translocation by plants of Nicotiana tabacum. Plant Cell Physiol., 43, 1036-1042 (2002) https://doi.org/10.1093/pcp/pcf130
  18. Pottenger, L. H., Domoradzki, J. Y., Markham, D. A., Hansen, S. C., Cagen, S. Z., and Waechter, J. M. Jr., The relative bioavailability and metabolism of bisphenol A in rats is dependent upon the route of administration. Toxicol. Sci., 54, 3-18 (2000) https://doi.org/10.1093/toxsci/54.1.3
  19. Rubin, B. S., Murray, M. K., Damassa, D. A., King, J. C., and Soto, A. M., Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ. Health Perspect., 109, 675-680 (2001) https://doi.org/10.2307/3454783
  20. Smith, R. V., Acosta, D. Jr., and Rosazza, J. P., Cellular and microbial models in the investigation of mammalian metabolism of xenobiotics. Adv. Biochem. Eng., 5, 69-100 (1977) https://doi.org/10.1007/BFb0008742
  21. Smith, R. V. and Rosazza, J. P., Microbial models of mammalian metabolism. J. Pharm. Sci., 64, 1737-1759 (1975) https://doi.org/10.1002/jps.2600641104
  22. Snyder, R. W., Maness, S. C., Gaido, K. W., Welsch, F., Sumner, S. C., and Fennell, T. R., Metabolism and disposition of bisphenol A in female rats. Toxicol. Appl. Pharmacol., 168, 225-234 (2000) https://doi.org/10.1006/taap.2000.9051
  23. Spivack, J., Leib, T. K., and Lobos, J. H., Novel pathway for bacterial metabolism of bisphenol A. Rearrangements and stilbene cleavage in bisphenol A metabolism. J. Biol. Chem., 269, 7323-7329 (1994)
  24. Staples, C. A., Dorn, P. B., Klecka, G. M., OBlock, S. T., and Harris, L. R., Bisphenol A concentrations in receiving waters near US manufacturing and processing facilities. Chemosphere, 40, 521-525 (1998) https://doi.org/10.1016/S0045-6535(99)00288-X
  25. Welshons, W. V., Nagel, S. C., Thayer, K. A., Judy, B. M., and vom Saal, F. S., Low-dose bioactivity of xenoestrogens in animals: fetal exposure to low doses of methoxychlor and other xenoestrogens increases adult prostate size in mice. Toxicol. Ind. Health., 15, 12-25 (1999) https://doi.org/10.1177/074823379901500103
  26. Yokota, H., Iwano, H., Endo, M., Kobayashi, T., Inoue, H., Ikushiro, S., and Yuasa, A., Glucuronidation of the environmental oestrogen bisphenol A by an isoform of UDP-glucuronosyltransferase, UGT2B1, in the rat liver. Biochem. J., 340, 405-409 (1999) https://doi.org/10.1042/0264-6021:3400405
  27. Zalko, D., Soto, A. M., Dolo, L., Dorio, C., Rathahao, E., Debrauwer, L., Faure, R., and Cravedi, J. P., Biotransformations of bisphenol A in a mammalian model: answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environ. Health Perspect., 111, 309-319 (2003)