Inhibitory Activity of Flavonoids from Prunus davidiana and Other Flavonoids on Total ROS and Hydroxyl Radical Generation

  • Jung, Hyun-Ah (Research Institute of Marine Science and Technology, Korea Maritime University) ;
  • Jung, Mee-Jung (Faculty Food Science and Biotechnology, Pukyong National University) ;
  • Kim, Ji-Young (College of Pharmacy, Pusan National University) ;
  • Chung, Hae-Young (College of Pharmacy, Pusan National University) ;
  • Choi, Jae-Sue (Faculty Food Science and Biotechnology, Pukyong National University)
  • Published : 2003.10.01

Abstract

Since reactive oxygen species (ROS) and hydroxyl radicals ($^-OH$) play an important role in the pathogenesis of many human degenerative diseases, much attention has focused on the development of safe and effective antioxidants. Preliminary experiments have revealed that the methanol (MeOH) extract of the stem of Prunus davidiana exerts inhibitory/scavenging activities on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals, total ROS and peroxynitrites ($ONOO^-$). In the present study, the antioxidant activities of this MeOH extract and the organic solvent-soluble fractions, dichloromethane (CH$_2$Cl$_2$), ethyl acetate (EtOAc), and n-butanol (n-BuOH), and the water layer of P. davidiana stem were evaluated for the potential to inhibit $^-OH$ and total ROS generation in kidney homogenates using 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA), and for the potential to scavenge authentic $ONOO^-$. We also evaluated the inhibitory activity of seven flavonoids isolated from P. davidiana stem, kaempferol, kaempferol 7-Ο-$\beta$-D-glucoside, (+)-catechin, dihydrokaempferol, hesperetin 5-Ο-$\beta$-D-glucoside, naringenin and its 7-Ο-$\beta$-D-glucoside, on the total ROS, $^-OH$ and $ONOO^-$ systems. For the further elucidation of the structure-inhibitory activity relationship of flavonoids on total ROS and 'OH generation, we measured the antioxidant activity of sixteen flavonoids available, including three active flavonoids isolated from P. davidiana, on the total ROS and 'OH systems. We found that the inhibitory activity on total ROS generation increases in strength with more numerous hydroxyl groups on their structures. Also, the presence of an ortho-hydroxyl group, whether on the Aring or S-ring, and a 3-hydroxyl group on the C-ring increased the inhibitory activity on both total ROS and $^-OH$ generation.

Keywords

References

  1. Ames, B. N., Shigenaga, M. K., and Hage, T. M., Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 90, 7915-7922 (1993) https://doi.org/10.1073/pnas.90.17.7915
  2. Aruoma, O. I., Assessment of potential prooxidant and antioxidant actions, J. Am. Oil Chem. Soc., 73, 1617-1625 (1996) https://doi.org/10.1007/BF02517962
  3. Balavoine G. G. and Genleti, Y. V., Peroxynitrite scavenging by different antioxidants, Part I: convenient assay. Nitric Oxide, 3, 40-54 (1999) https://doi.org/10.1006/niox.1999.0206
  4. Beckman, J. S., Beckman, T. W., Chen, J., Marshell, P. A., and Freeman, B. A., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci., USA, 87, 1620-1624 (1990) https://doi.org/10.1073/pnas.87.4.1620
  5. Branen, A. L., Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc., 52, 59-63 (1975) https://doi.org/10.1007/BF02901825
  6. Burda, S. and Oleszek, W., Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem., 49, 2774-2779 (2001) https://doi.org/10.1021/jf001413m
  7. Choi, J. S., Chung, H. Y., Kang, S. S., Jung, M. J., Kim, J. W., No, J. K. and Jung, H. A., The structure-activity relationship of flavonoids as scavengers of peroxynitrite. Phytochem. Res., 16, 232-235 (2002)
  8. Choi, J. S., Suh, S. S., Young, H. S., and Park, H. J., Hypolipemic and hypoglycemic activities of Prunus davidiana in high fat-fed rats. Arch. Pharm. Res., 14, 44-47 (1991a) https://doi.org/10.1007/BF02857813
  9. Choi, J. S., Yokozawa, T., and Oura, H., Improvement of hyperglycemia and hyperlipemia in streptozotocin-diabetic rats by a methanolic extract of Prunus davidiana stems and its main component, prunin. Plant Med., 57, 208-211 (1991b) https://doi.org/10.1055/s-2006-960075
  10. Choi, J. S., Yokozawa, T., and Oura H., Antihyperlipidemic effect of flavonoids from Prunus davidiana. J. Nat. Prod., 54, 218-224 (1991c) https://doi.org/10.1021/np50073a022
  11. Choi, J. S., Young, H. S., Lee, T. W., Woo, W. S., and Lee, E. B., Chemistry and anti-inflammatory activity of Prunus davidiana stems. Yakhak Hoeji, 36, 115-119 (1992)
  12. Choi, J. S., Lee, H. J., Park, H. J., and Kim, H. G., Screening of plants and marine algae and its active principles from Prunus davidiana. Kor. J. Pharmacogn., 24, 299-303 (1993)
  13. Choi, J. S., Park, K. Y., Moon, S. H., Rhee, S. H., and Young, H. S., Antimutagenic effect of plant of flavonoids in the Salmonella assay system. Arch. Pharm. Res., 17, 71-75 (1994) https://doi.org/10.1007/BF02974226
  14. Choi, J. S., Park, S. H., and Choi, J. H., Nitrite scavenging effect by flavonoids and its structure-effect relationship. Arch. Pharm. Res., 12, 26-33 (1989) https://doi.org/10.1007/BF02855742
  15. Choi, J. S., Woo, W. S., Young, H. S., and Park, H. S., Phytochemical study on Prunus davidiana. Arch. Pharm. Res., 13, 374-378 (1990) https://doi.org/10.1007/BF02858178
  16. Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Poel, B. V., Pieters, L., Vlietinck, A. J., and Berghe, D., Structureactivity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod., 61, 71-76 (1998) https://doi.org/10.1021/np970237h
  17. Dreher, D. and Junod, F., Role of oxygen free radicals in cancer development. Eur. J. Cancer, 32A(1), 30-38 (1996)
  18. Griffiths, H. R. and Lunec, J., The C1q binding activity of IgG is modified in vitro by reactive oxygen species: implications for rheumatoid arthritis. FEBS Lett., 388, 161-164 (1996) https://doi.org/10.1016/0014-5793(96)00542-X
  19. Harborne, F. B. and Williams, C. A., Advances in flavonoid research since 1992. Phytochem., 55, 481-504 (2000) https://doi.org/10.1016/S0031-9422(00)00235-1
  20. Jung, H. A., Kim, A. R., Chung, H. Y., and Choi, J. S., In vitro antioxidant activity of some selected Prunus species in Korea. Arch. Pharm. Res., 25, 865-872 (2002) https://doi.org/10.1007/BF02977006
  21. Kooy, N. W., Royall, J. A., Ischiropoulos, H., and Beckman, J. S., Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med., 16, 149-156 (1994) https://doi.org/10.1016/0891-5849(94)90138-4
  22. Krishnamachari, V., Levine, L., and Par$\acute{e}$, P. W., Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging. J. Agric. Food Chem., 50, 4357-4363 (2002) https://doi.org/10.1021/jf020045e
  23. Label, C. P. and Bondy, S. C., Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem. Int., 17, 435-441 (1990) https://doi.org/10.1016/0197-0186(90)90025-O
  24. Lee, W. R., Shen, S. C., Lin, H. Y., Hou, W. C., Yang, L. L., and Chen, Y. C., Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca2+-dependent endonuclease. Biochem. Pharmacol., 63, 225-236 (2002) https://doi.org/10.1016/S0006-2952(01)00876-0
  25. Morel, I., Lescoat, G., Cognel, P., Sergent, O., Pasdelop, N., Brissot, P., Cillard, P., and Cillard, J., Antioxidant and ironchelating activities of the flavonoids, catechin, quercetin and diosmetin, on iron-loaded rat hepatocyte cultures. Biochem. Pharmacol., 45, 13-19 (1993) https://doi.org/10.1016/0006-2952(93)90371-3
  26. Nagao, A., Seki, M., and Kobayashi, H., Inhibition of xanthine oxidase by flavonoids. Biosci. Biotechnol. Biochem., 63, 1787-1790 (1999) https://doi.org/10.1271/bbb.63.1787
  27. Park, H. S., Young, H. S., Park, K. Y., Rhee, S. H., Chung, H. Y., and Choi, J. S., Flavonoids from the whole plants of Orostachys japonicus. Arch. Pharm. Res., 14, 167-171 (1991) https://doi.org/10.1007/BF02892023
  28. Pincemail, J. J., Free radicals and antioxidants in human diseases. In Favier, A. E., Cadet, J., Kalyanaraman, B., Fontecave, M., and Pierre, J.-L., Analysis of Free radicals in Biological Systems. Birkhauser Verlag, Berlin, pp.83-98, (1995)
  29. Rice-Evans, C. A., Miller, N., and Paganga, G., Antioxidant properties of phenolic compounds. Trends in Plant Science, 2, 152-159 (1997) https://doi.org/10.1016/S1360-1385(97)01018-2
  30. Rice-Evans, C. A., Miller, N., and Paganga, G., Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  31. Sagar, S., Kallo, I. J., Kaul, N., Ganguly, N. K., and Sharma, B. K., Oxygen free radicals in essential hypertension. Mol. Cell Biochem., 111, 103-108 (1992)
  32. Salah, N., Miller, N. J., Paganga, G., Tijburg, L., Bolwell, G. P., and Rice-Evans, C. A., Polyphenolic flavonols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys., 322, 339-346 (1995) https://doi.org/10.1006/abbi.1995.1473
  33. Sawa, T., Akaike, T., and Maeda, H., Tyrosine nitration by peroxynitrite formed nitric oxide and superoxide generated by xanthine oxidase. J. Biol. Chem., 275(42), 32467-32474 (2000) https://doi.org/10.1074/jbc.M910169199
  34. Singh, A., Chemical and biochemical aspects of activated oxygen: singlet oxygen, superoxide anion, and related species, In Miquel, J., Quintanilha, A. T., and Weber, H. (Eds.). CRC Handbook of free radicals and antioxidants in Biomedicine. CRC Press, Inc., Boca Raton, Florida, Vol. 1, pp. 17-28, (1989)
  35. Sohal, R. S., Role of oxidative stress and protein oxidation in the aging process. Free Radic. Biol. Med., 33(1), 37-44 (2002) https://doi.org/10.1016/S0891-5849(02)00856-0
  36. Squadrito, G. L. and Pryor, W. A., Oxidative chemistry of nitric oxide: the role of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med., 25, 392-403 (1998) https://doi.org/10.1016/S0891-5849(98)00095-1
  37. Ueda, J., Saito, N., Shimazu, Y., and Ozawa, T., A comparison of scavenging abilities of antioxidants against hydroxyl radicals. Arch. Biochem. Biophys., 333, 377-384 (1996) https://doi.org/10.1006/abbi.1996.0404
  38. Van Acker, S. A. B. E., Van Balen, G. P., Van den Berg, D. J., Bast, A., and Van der Vijgh, W. J. F., Influence of iron chelation on the antioxidant activity of flavonoids. Biochem. Pharmacol., 56, 935-943 (1998) https://doi.org/10.1016/S0006-2952(98)00102-6