Effects of Changes in Glycosylation Sites on Secretion of Recombinant Human Erythropoietin in Cultured CHO Cells

  • Lee, H. G (Animal Biotechnology Division, NLRI, RDA) ;
  • Lee, P. Y. (Animal Biotechnology Division, NLRI, RDA) ;
  • Lee, Y. K. (Animal Biotechnology Division, NLRI, RDA) ;
  • Kim, S. J. (Animal Biotechnology Division, NLRI, RDA) ;
  • H. K. Chung (Animal Biotechnology Division, NLRI, RDA) ;
  • M. K. Seo (Animal Biotechnology Division, NLRI, RDA) ;
  • Park, J. K. (Animal Biotechnology Division, NLRI, RDA) ;
  • K. S. Min (Graduate School of Bio & Information Technology, Hankyong National University) ;
  • W. K. Chang (Animal Biotechnology Division, NLRI, RDA)
  • Published : 2003.12.01

Abstract

The effects of additions/deletions in glycosylated residues of recombinant human EPO (rhEPO) produced in CHO-K1 on their secretion were examined. hEPO cDNA was amplified from human liver mRNA and cloned into the pCR2.1 TOPO. Using overlapping-extension site-directed mutagenesis method, glycosylation sites at 24th, 38th, 83rd, and 126th were respectively or accumulatively removed by substituting its asparagine (or serine) with glutamine. To add novel glycosylation sites, 69 and 105th leucine was mutated to asparagine. Mutant and wild type rhEPO constructs were cloned into the pcDNA3 expression vector with CMV promoter and transfected into CHO cell line, CHO-K1, to produce mutant rhEPO mutant rhEPO proteins. Enzyme-linked immunosorbant assay (ELISA) and Western analysis with monoclonal anti-EPO antibody were performed using supernatants of the cultures showing transient and stable expressions respectively. Addition of novel glycosylation reduced rhEPO secretion dramatically while deletion mutants had little effect except some double deletion mutants ($\Delta$24/83 and $\Delta$38/83) and triple mutant ($\Delta$24/38/83). This fact suggests that not single but combination of changes in glycosyl groups affect secretion of rhEPO in cell culture, possibly via changes in their conformations.

Keywords

References

  1. Bill, R. M., Flitsch, S. L. and Bicknell, R. 1997. COS-1 cell expression and one-step affinity protein purification and activity of epitopetagged human erythropoietin and of site-directed mutants. Biochim. Biophys. Acta. 1340:13-20
  2. Cointe, D., Beliard, R., Jorieux, S., Leroy, Y., Glacet, A., Verbert, A., Bourel, D. and Chirat, F. 2000. Unuaual N-glycosylation of a recombinant human erythropoietin expressed in a human Iympholastoid cell line does not alter its biological properties. Glycobiology 10:511-519
  3. Delorme Delorme, E., Lorenzini, T., Giffin, J., Martin, F., Jacobsen, F., Boone, T. and Elliott, S. 1992. Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 20;31(41):9871-9876
  4. Dube, S., Fisher, J. W. and Powell, J. S. 1988. Glycosylation at specific sites of erythropoietin is essential fer biosynthesis, Secretion, and biological function. J. BioI. Chem. 263:17516-17521
  5. Egrie, J. C. and Browne, J K. 2001. Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant 3:3-13
  6. Ellioitt, S., Lorenzini, T., Chang, D., Barzilay, J. and Delorme, E. 1997. Mapping of the active site of recombinant human erythropoietin. Blood 89:493-502
  7. Fibi, M. R., Hermentin, P., Pauly, J. U., Lauffer, Land Zettlmeissl, G. 1995. N- and O-glycosylation muteins of recombinant human erythropoietin secreted from BHK-21 cells. Blood 85:1229-1236
  8. Fisher, J. W. 1997. Erythropoietin: physiologic and pharmacologic aspects. Proc. Soc. Exp. BioI. Med. 216:358-369 https://doi.org/10.3181/00379727-216-44183
  9. Fukuda, M. N., Sasaki, H., Lopez, L. and Fukuda, M. 1989. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73:84-89
  10. Goldwasser, E. and Kung, C. K. 1968. Progress in the purification of erythropoietin. Ann. N. Y. Acad. Sci. 29:49-53
  11. Kawasaki, N., Haishima, Y., Ohta, M., Itoh, S., Hyuga, M., Hyuga, S. and Hayakawa, T. 2001. Structural analysis of sulfated N-linked oligosaccharides in erythropoietin. Glycobiology 11: 1043-1049
  12. Kitagawa, Y., Sano, Y., Veda, M., Higashio, K., Narita, H., Okano, M., Matsumoto, S. and Sasaki, R. 1994. N-glycosylation of erythropoietin is critical for apical secretion by Madin-Darby canine kidney cells. Experimental Cell Research 213:449-457
  13. Macdougall, I. C., Gray, S. J., Elston, O., Breen, C., Jenkins, B., Browne, J. and Egrie, J. 1999. Pharmacokinetics of Novel Erythropoiesis Stimulating Protein Compared with Epoetin Alfa in Dialysis Patients. J. Am. Soc. Mephol. 10: 2392-2395
  14. Macmillan, D., Bill, R. M., Sage, K. A., Fern, D. and Flitsch, S. L. 2001. Selective in vitro glycosylation of recombinant proteins: semisynthesis of novel homogeneous glycoforms of human erythropoietin. Chem. BioI. 8:133-145 https://doi.org/10.1016/S1074-5521(00)90065-6
  15. McDonald, J. D., Lin, F. K. and Goldwasser, E. 1986. Cloning, Sequencing and Evolutionary Analysis of the Mouse Erythropoietin Gene. Mol. Cell BioI. 6:842-848 https://doi.org/10.1128/MCB.6.3.842
  16. Nagao, M., Suga, H., Okano, M., Masuda, S., Narita, H., Ikura, K. and Sasaki, R. 1992. Nucleotide Sequence of rat erythropoietin. Biochim. Biophys. Acta. 1171:99-102
  17. Narhi, L. O., Arakawa, T., Aoki, K. H., Elmore, R., Rohde, M. F., Boone, T. and Strickland, T. W. 1991. The effect of carbohydrate on the structure and stability of erythropoietin. J. BioI. Chem. 266:23022-23026
  18. Powell, J. S., Berkner, K. L., Lebo, R. V. and Adamson, J. W. 1986. Human erythropoietin gene: high level expression in stably transfected mammalian cells and chromosome localization. Proc. Natl. Acad. Sci. USA. 83(17):6465-6469 https://doi.org/10.1073/pnas.83.17.6465
  19. Sasaki, H., Bothner, B., Dell, A. and Fukuda, M. 1987. Carbohydrate structure of erythro-poiettn expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J. BioI. Chem. 262:12059-12076
  20. Shoemaker, C. B. and Mitsock, L. D. 1986. Murine EPO gene : cloning, expression and human gene homology. Mol. Cell BioI. 6:849-858 https://doi.org/10.1128/MCB.6.3.849
  21. Takeuchi, M., Inoue, N., Strickland, T. W., Kubata, M., Wada, M., Shimizu, R., Hoshi, S., Kozutsumi, H., Takasaki, S. and Kobata, A. 1989. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA. 86:7819-7822
  22. Ureana, P. 2002. Treatment of anemia in chronic renal failure by a long-activing activator of erythropoiesis. Presse. Med. 23;31:505-514
  23. Wasley, L. C., Timony, G., Murtha, P., Stoudemire, J., Dorner, A. J., Caro, J., Krieger, M. and Kaufman, R. J. 1991. The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin. Blood 77:2624-32
  24. Wen, D., Boissel, J. P., Tracy, T. E., Gruninger, R. H., Mulcahy, L. S., Czelusniak, J., Goodman, M. and Bunn, H. F. 1993. Erythropoietin structure function relationships: high degree of sequence homology among mammals. Blood 82:1507-1516
  25. Yamaguchi, K., Akai, K., Kawanishi, G., Ueda, M., Masuda, S. and Sasaki, R. 1991. Effects of site-directed removal of N-glycosylation sites in human erythropoietin on its production and biological properties. J. BioI. Chem. 266: 20434-20439