Developing a Numerical Model for Simulating In-Situ Biodegradation of an Organic Contaminant, TCE, in Biobarrier

생물벽체내 유기오염물질 TCE의 생물학적 분해 모의를 위한 수치모델개발

  • Published : 2003.12.01

Abstract

This study presents a mathematical model for simulating the fate and transport of a reactive organic contaminant, TCE, degraded by cometabolism in dual-porosity soils during the installation of in situ biobarrier. To investigate the effect of dual-porosity on transport and biodegradation of organic hydrocarbons, a bimodal approach was incorporated into the model. Modified Monod kinetics and a microcolony concept were employed to represent the effects of biodegrading microbes on the transport and biodegradation of an organic contaminant. The effect of permeability reduction in biobarrier due to biomass accumulation on the flow field were examined in the simulation of a hypothetical field-scale in situ bioaugmentation. Simulation results indicate that the presence of the immobile region can decrease the bioavailability of biodegradable contaminants and that the placement of microbes and nutrients injection wells should be considered for an effective installation of biobarrier during in situ bioaugmentation scheme.

본 연구에서는 원위치 생물학적 처리 과정에서 공대사 기작에 의해 분해되는 유기오염물질의 성상과 거동을 모의하기 위한 수학적 모델을 제기하였다. 토양구조 내에서 부동유역의 존재가 처리 과정에 미치는 영향을 고려하기 위하여 이중공극 개념을 적용하였으며, 유기오염물질의 거동과 생물학적 처리에 미치는 미생물의 영향을 수학적으로 표현하기 위하여 수정된 Monod식과 토양상 미생물의 미소군집모형이 적용되었다. 가상의 원위치 생물학적 처리 과정에 대한 모델의 적용을 통하여 공극내 생체축적으로 인한 투수능의 감소가 지하수 흐름에 미치는 영향이 예시되었다. 가상의 생물학적 처리 과정에 대한 모델의 모의결과는 부동유역의 존재가 유기오염물질의 생물학적 가용성을 저감시키며, 생물벽체의 형성 및 처리과정에 있어 외부로부터의 미생물 및 영양물질 주입정의 위치가 효과적인 처리 계획의 수립을 위해 중요하다는 것을 보여 주었다.

Keywords

References

  1. Tang, W.C., White, J.C., and Alexander, M. 'Utilization of sorbed compounds by microorganisms specifically isolated for that purpose', Appl. Microbiol. Biotechnol., 49(1), pp. 117-121 (1998) https://doi.org/10.1007/s002530051147
  2. Laor, Y, Strom, P.R, and Farmer, W.J. 'Bioavailability of phenanthrene sorbed to mineral-associated humic acid', Water Res., 33(7), PP. 1719-1729 (1999) https://doi.org/10.1016/S0043-1354(98)00378-9
  3. Ogram, A.V., Jessup, R.E., Ou, L.T, and Rao, P.S.C. 'Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic acid in soils', Appl. Environ. Micro-biol., 49, PP. 582-587 (1985)
  4. Smith, S.C., Ainsworth, C.C., Traina, S.J., and Hicks, R.J, 'Effect of sorption on biodegradation of quiniline', Soit Sci. Soc. Am. J. 56, pp. 737-746 (1992) https://doi.org/10.2136/sssaj1992.03615995005600030011x
  5. Zhang, W., Bouwer, E.J., and Ball, W.P. 'Bioavailability of hydrophobic organic contaminants: Effects and implica-tions of sorption-related mass transfer on bioremediation', Ground Water Monitorins and Remediation, 18(1), pp. 126-138 (1998) https://doi.org/10.1111/j.1745-6592.1998.tb00609.x
  6. Brusseau, M.L. and Rao, P.S.C. 'Sorption nonideality dur-ing organic contaminant transport in porous media', CRC Crit. Rev. Environ, Control, 19(1), PP. 33-99 (1989) https://doi.org/10.1080/10643388909388358
  7. Corapcioglu, M.Y. and Wang, S. 'Dual-porosity groundwa-ter contarninant transport in the presence of colloids', Water Resour. Res., 35(11), pp. 3261-3273 (1999) https://doi.org/10.1029/1999WR900122
  8. Taylor, S.W. and Jaffe, P.R. 'Substrate and biomass transport in a porous medium', Water Resour. Res., 26(9), pp. 2181-2194 (1990) https://doi.org/10.1029/WR026i009p02181
  9. Semphni, L., Hopkins, G.D. and Roberts, P.V. 'A field evaluation of in-situ biodegradation of chlorinated ethenes: Studies of competitive inhibition', Ground Water, 29(2), pp. 239-50 (1991) https://doi.org/10.1111/j.1745-6584.1991.tb00516.x
  10. Gupta, N. and Fox, T.C. 'Hydrogeologic modeling for per-meable reactive barriers', J. Hazard. Mater., 68, PP. 19-39(1999) https://doi.org/10.1016/S0304-3894(99)00030-8
  11. Eykholt, G.R., Elder, C.R. and Benson, C.H. 'Effects of aquifer heterogeneity and reaction mechanism uncertainty on a reactive barrier', J. Hawrd. Mater., 68, PP. 73-96 (1999) https://doi.org/10.1016/S0304-3894(99)00032-1
  12. Chen, B.M. and Kojouharov, H.V. 'Non-standard numerical methods applied to subsurface biobamer formation models in porous media', Bull. Math. Biol., 61, pp. 779-798 (1999) https://doi.org/10.1006/bulm.1999.0113
  13. Molz, FJ., Widdowson, M.A. and Benefield, L.D. 'Simula-tion of microbial growth dynamics coupled to nutrient and oxygen transport in porous media', Water Resour. Res., 22(8), pp. 1207-1216 (1986) https://doi.org/10.1029/WR022i008p01207
  14. Semprini, L., and McCarty, P.L. 'Comparison between model simulations and field results for in-situ biorestoration of chlorinated aliphatics, Part 2. cometabolic transformations', Ground Water, 30(1), pp. 37-44 (1992) https://doi.org/10.1111/j.1745-6584.1992.tb00809.x
  15. Coats, K.H. and Smith, B.D. 'Dead-end pore volume and dispersion in porous media', Soc. Pet. Eng. J., 4, pp. 73-84 (1964) https://doi.org/10.2118/647-PA
  16. Clement, T.P., Hooker, B.S. and Skeen, R.S. 'Macroscopic models for predicting changes in saturated porous media properties caused by rmcrobial growth', Ground Water, 34(5), pp. 934-942 (1996) https://doi.org/10.1111/j.1745-6584.1996.tb02088.x
  17. Wang, S. and Corapcioglu, M.Y 'Simulation of bioaugmen-tation involving exogenous bacteiia injecdon', Water Resour. Res., 38(12), 1293, doi:10.1029/2001WR000344 (2002)