DOI QR코드

DOI QR Code

단일 공정에 의한 고효율 단일모드 반도체 레이저 구조 제작을 위한 고밀도 양자 나노구조 형성

High-Density Quantum Nanostructure for Single Mode Distributed Feedback Semiconductor Lasers by One-Step Growth

  • 발행 : 2003.08.01

초록

We have developed a new way of the constant growth technique to maintain a grating height of originally-etched V-groove of submicron gratings up to 1.5 $\mu\textrm{m}$ thickness by a low pressure metalorganic chemical vapor deposition. The constant growth technique is well performed on two kinds of submicron gratings that made by holography and electron (e)-beam lithography GaAs buffer layer grown on thermally deformed submicron gratings has an important role in recovering the deformed grating profile from sinusoidal to V-shaped by reducing mass transport effects. The thermal deformation effect on submicron gratings made by e-beam lithography is less than that on submicron gratings made by holography. The constant growth technique is an important step to realize complex optoelectronic devices such as one-step grown distributed feedback lasers and two-dimensional photonic crystals.

키워드

참고문헌

  1. P. Demeester, G. Vermeire, F. Vermaerke, I. Moerman, P. Van Daele, A. Gustafsson, L. Samuelson, V. Berger, and C. Weisbuch, Low Dimensional Structures Prepared by Epitaxial Growth or Patterned Substrates, NOTO ASI series, 298, 253 (1989)
  2. K. Inoguchi, H. Kudo, S. Sugahara, S. Ito, H.Yagi, and H. Takiguchi, Jpn. J. Appl. Phys. 33, 852 (1994) https://doi.org/10.1143/JJAP.33.852
  3. T. Earles, L. J. Mawst, and D. Botez, Appl. Phys. Lett. 73, 2072 (1998) https://doi.org/10.1063/1.122381
  4. C. Constantin, E. Martinet, A. Rudra, K. Leifer, F. Lelarge, G. Biasiol, and E. Kapon, J. Crystal Growth 207, 161 (1999) https://doi.org/10.1016/S0022-0248(99)00361-9
  5. C-S. Son, S-I. Kim, Y. Kim, Y. K. Park, E. K. Kim, S. K. Min, and I-H. Choi, J. Appl. Phys. 82, 1205 (1997) https://doi.org/10.1063/1.366264
  6. C-S. Son, Y. K. Park, S-I. Kim, Y. Kim, E. K. Kim, S. K. Min, and I-H. Choi, Jpn. J. Appl. Phys. 37, 1701 (1998) https://doi.org/10.1143/JJAP.37.1701
  7. E. Colas, S. Simhony, E. Kapon, R. Bhat, D. M. Hwang, and P. S. D. Lin, Appl. Phys. Lett. 57, 914 (1990) https://doi.org/10.1063/1.103384
  8. P. K. York, J. C. Connolly, N. A. Hughes, T. J. Zamerowski, J. H. Abeles, J. B. Kirk, J. T. McGinn, and K. B. Murphy, J. Crystal Growth 124, 709 (1992) https://doi.org/10.1016/0022-0248(92)90540-Y
  9. T. Sogawa, S. Ando, and H. Kanbe, Appl. Phys. Lett. 64, 472 (1994) https://doi.org/10.1063/1.111133
  10. T. G. Kim, E. K. Kim, S. K. Min, and J. H. Park, Appl. Phys. Lett. 69, 955 (1996) https://doi.org/10.1063/1.117093
  11. H. Nagai, Y. Noguchi, and T. Matsuoka, J. Crystal Growth 71, 225 (1985) https://doi.org/10.1016/0022-0248(85)90066-1
  12. M. Schilling and K. Wunstel, Appl. Phys. Lett. 49, 710 (1986) https://doi.org/10.1063/1.97575
  13. K. Kojima, K. Misunaga, and K. Kyuma, Appl. Phys. Lett. 56, 154 (1990) https://doi.org/10.1063/1.103036
  14. T. Koui, Y. Sakata, Y. Sasaki, T. Matsumoto, and K. Komatsu, J. Crystal Growth 195, 503 (1998) https://doi.org/10.1016/S0022-0248(98)00701-5
  15. J. Crystal Growth v.195 T.Koui;Y.Sakata;Y.Sasaki;T.Matsumoto;K.Komatsu https://doi.org/10.1016/S0022-0248(98)00701-5