Synthesis of Zirconium Oxides on silicon by Radio-Frequency Magnetron Sputtering Deposition

  • Ma, Chunyu (State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology) ;
  • Zhang, Qingyu (State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology)
  • 발행 : 2003.10.01

초록

Zirconium oxide films have been synthesized by radio-frequency magnetron sputtering deposition on n-Si(001) substrate with metal zirconium target at variant $O_2$ partial pressures. The influences of $O_2$ partial pressures of the morphology, deposition rate, microstructure, and the dielectric constant of $ZrO_2$ have been discussed. The results show that deposition rate of $ZrO_2$ films decreases, the roughness, and the thickness of the native $SiO_2$ interlayer increases with the increase of $O_2$ partial pressure. $ZrO_2$ films synthesized at low $O_2$ partial pressure are amorphous and monoclinic polycrystalline in nanometer scale at low $O_2$ partial pressure. The relative dielectrics of $ZrO_2$ films are in the range of 12 to 25.

키워드

참고문헌

  1. D. Buchanan, IBM J. Res. Develop. 43, 245 (1999) https://doi.org/10.1147/rd.433.0245
  2. M. L. Green, E. P. Gusev, R. Degraeve, and E. Garfunkel, J. Appl. Phys. 90, 2057 (2001) https://doi.org/10.1063/1.1385803
  3. M. Copel, M. Gribelyuk, and E. P. Gusev, Appl. Phys. Lett. 76, 436 (2000) https://doi.org/10.1063/1.125779
  4. T. S. Jeon, J. M. White, and D. L. Kwong, Appl. Phys. Lett. 78, 368 (2001) https://doi.org/10.1063/1.1339994
  5. W.-J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee, Appl. Phys. Lett. 77, 3269 (2000) https://doi.org/10.1063/1.1326482
  6. L. Kang, K. Qnishi, Y. Jeon, B. H. Lee, C. Kang, W.-J. Qi, R. Nieh, S. Gopalan, R. Choi, and J. C. Lee, IEDM Technical Digest 181 (2000)
  7. S. A. Campbell, H. S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, IBM J. Res Develop. 43, 383 (1999) https://doi.org/10.1147/rd.433.0383
  8. G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. Urdahl, Appl. Phys. Lett. 73, 1517 (1998) https://doi.org/10.1063/1.122191
  9. M. Gurvitch, L. Manchanda, and J. M. Gibson, Appl. Phys. Lett. 51, 919 (1987) https://doi.org/10.1063/1.98801
  10. J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, and J. M. Rosamilia, J. Appl. Phys. 89, 3920 (2001) https://doi.org/10.1063/1.1352688
  11. S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, Appl. Phys. Lett. 77, 2710 (2001)
  12. E. P. Gusev, M Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. Gribelyuk, Appl. Phys. Lett. 76, 176 (2000) https://doi.org/10.1063/1.125694
  13. M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M. Poppeler, Appl. Phys. Lett. 78, 2670 (2001) https://doi.org/10.1063/1.1367902
  14. R. Ludeke, M. T. Cuberes, and E. Cartier, Appl. Phys. Lett. 76, 2886 (2001)
  15. D. Landheer, J. A. Gupta, G. I. Sproule, J. P. McCaffrey, M. J. Graham, K.-C. Yang, Z.-H. Lu, W. N. Lennard, and J. Electrochem. Soc. 148, G29 (2001)
  16. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87, 484 (2000) https://doi.org/10.1063/1.371888
  17. M. Copel, E. Cartier, and F. M. Ross, Appl. Phys. Lett, 78, 1607 (2001) https://doi.org/10.1063/1.1355002
  18. J. A. Gupta, D. Landheer, J. P. McCaffrey, and G. I. Sproule, Appl. Phys. Lett. 78, 1718 (2001) https://doi.org/10.1063/1.1356725
  19. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, J. Appl. Phys. 83, 3323 (1998) https://doi.org/10.1063/1.367101