DOI QR코드

DOI QR Code

마이크로파 여기 프라즈마법으로 제조한 강자성 터널링 접합의 국소전도특성

Local Current Distribution in a Ferromagnetic Tunnel Junction Fabricated Using Microwave Excited Plasma Method

  • 윤대식 (고기능성자성재료연구센터, 충남대학교) ;
  • 김철기 (고기능성자성재료연구센터, 충남대학교) ;
  • 김종오 (고기능성자성재료연구센터, 충남대학교) ;
  • ;
  • ;
  • 발행 : 2003.04.01

초록

DC 마그네트론 스파터법과 RLSA(Radial Line Slot Antenna)을 이용한 마이크로파 여기 프라즈마를 이용하여 Ta/Cu/Ta/NiFe/Cu/Mn$_{75}$Ir$_{25}$/ $Co_{70}$Fe$_{30}$/Al-oxide 구조의 접합을 제조한 후, contact-mode AM(Atomic Force Microscope)을 이용하여 Al 산화막의 국소전도 특성의 평가를 수행하였다. AFM 동시전류측정으로부터, 얻어지는 표면상과 전류상은 대응하지 않는다. 국소 전류-전압(I-V)의 측정 결과, 전류상은 절연층의 barrier height의 분포를 나타내고 있다는 것을 알았다.다.다.

Ferromagnetic tunnel junctions were fabricated by dc magnetron sputtering and plasma oxidation process. The local transport properties of the ferromagnetic tunnel junctions were studied using contact-mode Atomic Force Microscopy (AFM) and the local current-voltage analysis. Tunnel junctions with the structure of sub./Ta/Cu/Ta/NiFe/Cu/Mn$\_$75/Ir$\_$25//Co$\_$70/Fe$\_$30//Al-oxide were prepared on thermally oxidized Si wafers. Al-oxide layers were formed with microwave excited plasma using radial line slot antenna (RLSA) for 5 and 7 sec. Kr gas was used as the inert gas mixed with $O_2$ gas for the plasma oxidization. No correlation between topography and current image was observed while they were measured simultaneously. The local current distribution was well identified with the distribution of local barrier height. Assuming the gaussian distribution of the local barrier height, the ferromagnetic tunnel junction with longer oxidation time was well fitted with the experimental results. As contrast, in the case of the shorter time oxidation junction, the current mainly flow through the low barrier height area for its insufficient oxygen. Such leakage current might result in the decrease of tunnel magnetoresistance (TMR) ratio.

키워드

참고문헌

  1. Appl.Phys.Left v.77 H.F.Hanm;M.Oogane;H.kubota;Y.Ando;T.Miyazaki
  2. JPN.J.Appl.Phys v.39 H.F.Han;T.Daibou;M.Kamijo;k.yAOITA.H.Kubota;Y.Ando;T.Miyazaki https://doi.org/10.1143/JJAP.39.L439
  3. J.Magn.Magn.Master v.139 T.Miyazaki;N.Tezuka https://doi.org/10.1016/0304-8853(95)90001-2
  4. IEEE Trans.Magn. v.35 S.Tehrani.J.M.Slaughter;E.Chen;N.Durlam;J.Shi;M.Deherrera https://doi.org/10.1109/20.800991
  5. Phys.Rev.Lett v.74 J.S.Moodera;Lisa R.Kinder;Terrilyn M;Wong;R.Meservey
  6. J.Magn.soc.Japan v.25 M.Hayashi;Y.Ando;H.Kubota;T.Miyazaki https://doi.org/10.3379/jmsjmag.25.759
  7. Inst.Electr.Commnu.Eng.Tech.Rep. v.AP80-57 N.Goto;M.Yamamoto
  8. Jpn.J.Appl.Phys. v.38 T.Yamato;N.TChien;M.Ando;N.Goto;M.Hirayama;T.Ohmi https://doi.org/10.1143/JJAP.38.2082
  9. Jpn.J.Appl.Phys v.38 Y.Saito;K.Sekine;M.Hirayama;T.Ohmi https://doi.org/10.1143/JJAP.38.2329
  10. Jpn.J.Appl.Phys. v.69 T.Ohmi;S.Sugawa;M.Hirayama;Y.Saito
  11. Jounal of Magnetics v.7 no.3 K.Nishikawa;S.Ogata;T.Syoyama;W.S.Cho;T.S.Yoon.;M.Tsunoda;M.Takahashi https://doi.org/10.4283/JMAG.2002.7.3.063
  12. Jpn.J.Appl.Left. v.37 R.Wiesendanger;M.Bode;R.Dombrowski;M.Getzlaff;M.Morgenstern;C.Wittneven https://doi.org/10.1143/JJAP.37.3769
  13. Appl.Phys.Lett. v.69 H.Tomiye;T.Yao;H.Kawami;T.Hayase https://doi.org/10.1063/1.117867
  14. Appl.Phys.Lett. v.73 A.Olbrich;B.Ebersberger;C.Boit https://doi.org/10.1063/1.122690
  15. J.Appl.Phys. v.83 V.Da Costa;F.Barou;C.Beal;Y.Henry;J.P.Bucher;K.Ounadjela https://doi.org/10.1063/1.367814
  16. Appl.Phys.Lett v.69 F.Houze;R.Meyer;O.Schnnegans;L.Boyer https://doi.org/10.1063/1.117179
  17. J.Magn.Soc.Japan. v.24 Y.Ando;H.Kameda.M.Hayashi.H.Kubota;T.Miyazaki https://doi.org/10.3379/jmsjmag.24.611
  18. J.Appl.Phys. v.87 Y.Ando;H.Kameda;H.Kubota;T.Miyazaki https://doi.org/10.1063/1.373296
  19. Jpn.J.Appl.Phys. v.38 Y.Ando;H.Kameda;H.Kubota;T.Miyazaki https://doi.org/10.1143/JJAP.38.737