DOI QR코드

DOI QR Code

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development

수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발

  • 이진선 (삼성물산 건설부문) ;
  • 김동수 (한국과학기술원 건설및환경공학과)
  • Published : 2003.10.01

Abstract

In this paper, the cyclic soil behavior model. which can accommodate the cyclic hardening, was developed by modifying the original parallel IWAN model. In order to consider the irrecoverable plastic strain of soil. the cyclic threshold strain, above which the backbone curve deviates from the original curve, was defined and the accumulated strain was determined by summation of the strains above the cyclic threshold in the stress-strain curve with applying Masing rule on unloading and reloading curves. The isotropic hardening elements are attached to the original parallel IWAN model and the slip stresses in the isotropic hardening elements are shown to increase according to the hardening functions. The hardening functions have a single parameter to account for the cyclic hardening and are defined by the symmetric limit cyclic loading test in forms of accumulated shear strain. The model development procedures are included in this paper and the verifications of developed model are discussed in the companion paper.

본 논문에서는 기존 IWAN 모델을 수정하여 사질토 지반의 반복경화 현상을 나타낼 수 있는 지반의 반복경화모델을 개발하였다. 일반적으로 동적하중을 받는 지반재료는 하중 반복회수에 따라 동적 거동특성이 변화하게 되며 이는 반복 경화 및 연화현상으로 나타난다. 본 논문에서는 등방 경화 또는 등방 연화 거동을 하는 스프링슬라이더 요소를 기존 병렬 IWAN 모델에 추가함으로써 지반의 동적 변형특성 표현이 가능하였다. 등방 경화 거동을 보이는 요소들의 항복 응력은 각각 반복 경화함수에 의하여 증가하도록 정의되었으며, 반복 경화함수는 대칭 한계를 가지는 동적 비틂전단 시험결과로부터 정의되었다. 이렇게 정의된 반복 경화함수는 지반의 동적 변형 특성을 묘사하기 위하여 하나의 독립 변수를 가지게 되며, 사용된 독립변수는 지반의 동적 한계 변형률의 특성을 포함하는 누적전단변형률로 사용되었다. 누적 전단변형률은 반복 전단한계 변형률 이상의 변형률의 누적으로 정의되며, 역재하 및 재재하 곡선에서는 Masing의 법칙을 적용하여 계산될 수 있다. 본 논문에서는 모델의 개발과정을 서술하였고, 모델에 대한 검증은 동반논문인 검증편에 설명하였다.

Keywords

References

  1. Fung, Y. C., Foundations of soild mechnics, Prentice-Hall, Englewood Cliffs, N. J., 1965.
  2. Ishihara, K., Soil Behavior in Earthquake Geotechnics, Oxford University Press Inc, New York, 1996.
  3. Kondnor, R. L. and Zelasko, J. S., “A hyperbolic Stress-Strain Formulation of Sands,” Proceedings 2nd Pan American Conference on Soil Mechanics and Foundation Engineering, 1963, pp. 289-324.
  4. Duncan, J. M. and Chang, C. Y., “Nonlinear Analysis of Stress and Strain in Soils,” Proceedings ASCE, Vol. 96, No. SM5, 1970, pp. 1629-1653.
  5. Purzin, A. M. and Shiran, A., “Effects of the Constitutive Relationship on Seismic Response of Soils. Part I. Constitutive Modelling of Cyclic Behavior of Soils,“ Soil Dynamics and Earthquake Engineering, Vol. 19, 2000, pp. 305-318. https://doi.org/10.1016/S0267-7261(00)00027-0
  6. Mroz, A., “NonAssociated Flow Rules in Plasticity,” Journal Mecanique, Paris, France, Vol. II, 1963, pp. 21-42.
  7. Krieg, R. D., “A Pratical Twosurface Plasticity Theory,” Journal of Applied Mechanics, ASME, Vol. 42, 1975, pp. 641-646. https://doi.org/10.1115/1.3423656
  8. Inel, S., “Kinematic Hardening Model for Sand Behavior during Large Stress Reversals,” Ph. D. dissertation, UCLA Civil Engineering Department, Los Angeles, California, 1992.
  9. Prevost, J. H., “Mathematical Modeling of Monotonic and Cyclic Undrained Clay Behavior,” International Journal of numerical and Analytical Methods in Geomechanics, Vol. 1, No. 2, 1977, pp. 195-216. https://doi.org/10.1002/nag.1610010206
  10. Iwan, W. D., “On a Class of Models for the Yielding Behavior of Continuous and Composite Systems,” Journal of Applied Mechanics, ASME, Vol. 34, 1967, pp. 612-617. https://doi.org/10.1115/1.3607751
  11. Nelson, R. B. and Dorfmann, A., “Parallel Elastoplastic Models of Inelastic Material Behavior,” Journal of Engineering Mechanics, ASCE, Vol. 121, No. 10, 1995, pp. 1089-1097. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:10(1089)
  12. Eekelen, H. A. M. van, and Potts, D. M., “The Behavior of Drammen Clay Under Cyclic Loading,” Geotechnique, Vol. 28, 1978, pp. 173-196. https://doi.org/10.1680/geot.1978.28.2.173
  13. Valanis, K. C. and Read, H. E., A New Endochronic Plasticity Model, Soil Mechnics-Transient and Cyclic Loads, John Wiley and Sons, New York, 1982, pp. 375-471.
  14. Purzin, A., Frydman, S., and Talesnick, M., “Normalized Nondegrading Behavior of Soft Clay under Cyclic Simple Shear Loading,” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 12, 1995, pp. 836-843. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(836)
  15. Muravskii, G. and Frydman, S., “Site Response Analysis Using NonLinear Hysteretic Model,” Soil Dynamics and Earthquake Engineering, Vol. 17, 1998, pp. 227-238. https://doi.org/10.1016/S0267-7261(98)00002-5
  16. Hashiguchi, K. and Chen, Z. P., “Elastoplastic Constitutive Equation of Soils with the Subloading Surface and the Rotational Hardening,” International Jorunal for Numerical and Analytical Methods in Geomechanics, Vol. 22, 1998, pp. 197-227. https://doi.org/10.1002/(SICI)1096-9853(199803)22:3<197::AID-NAG914>3.0.CO;2-T
  17. Woodward, P. K. and Molenkamp, F., “Application of An Advanced Multi-surface Kinematic Constitutive Soil Model,” International Jorunal for Numerical and Analytical Methods in Geomechanics, Vol. 23, 1999, pp. 1995-2043. https://doi.org/10.1002/(SICI)1096-9853(19991225)23:15<1995::AID-NAG47>3.0.CO;2-U
  18. Idriss, I. M, Dobry, R., and Singh, R. D., “Nonlinear Behavior of Soft Clays During Cyclic Loading,” Journal of Geotechnical Engineering Division, ASCE, Vol. 104, No. GT12, 1978, pp. 1427-1447.
  19. Vucetic, M., “Normalized Behavior of Clay under Irregular Cyclic Loading,” Canadian Geotechnique, Vol. 27. No. 1, 1990, pp. 29-46. https://doi.org/10.1139/t90-004
  20. Rao, S. N. and Panda, A. P., “Nonlinear Analysis of Undrained Cyclic Strength of Soft Marine Clay,” Ocean Engineering, Vol. 26. 1999, pp. 241-253. https://doi.org/10.1016/S0029-8018(97)10028-2
  21. Finn, W. D. L., Bhatia, S. K., and Pickering, D. J., The Cyclic Simple Shear Test, Soil Mechnics-Transient and Cyclic Loads, John Wiley and Sons, New York, 1982, pp. 583- 607.
  22. Kim, D. S., “Deformation Characteristics of Soils at Small to Intermediate Strains from Cyclic Tests,” Ph. D. Dissertations, University of Texas at Austin, 1991.
  23. Talesnick, M. and Frydman, S., “Irrecoverable and Overall Strains in Cyclic Shear of Soft Clay,” Soils and Foundations, Vol. 32, No. 3, 1992, pp. 4760.
  24. Vucetic, M., “Cyclic Threshold Shear Strains in Soils,” Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 12, 1994, pp. 2208-2228. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2208)
  25. Matasovic, N. and Vucetic, M., “A Pore Pressure Model for Cyclic Straining of Clay,” Soils and Foundations, Vol. 32. No. 3, 1992, pp. 156-173. https://doi.org/10.3208/sandf1972.32.3_156
  26. Dobry, R., Yokel, F. Y., and Ladd, R. S., “Liquefaction Potential of Overconsolidated Sands in Moderately Seismic Areas,” Proceedings of Conference on Earthquakes and Earthquake Engineering in Eastern U. S., Knoxville, Tennessee, Ann Arbor Science Publisher Inc., Ann Arbor, Michigan, Vol. 2, 1981, pp. 643-664.
  27. Seed, H. B. and Idriss, I. M., “Soil Moduli and Damping Factors for Dynamic Response Analysis,” Report No. UCB/EERC70/10, Earthquake Engineering Research Center, University of California, Berkeley, 1970. 12, 48 pp.
  28. Finn, W. D. L., Dynamic Response Analyses of Saturated Sands, Soil Mechnics-Transient and Cyclic Loads, John Wiley and Sons, New York, 1982, pp. 105-131.
  29. Bazant, Z. P., Ansal, A. M., and Krizek, R. J., Endochronic Models for Soils, Soil Mechnics-Transient and Cyclic Loads, John Wiley and Sons, New York, 1982, pp. 419-438.