• 제목/요약/키워드: irrecoverable strain

검색결과 15건 처리시간 0.038초

수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발 (A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development)

  • 이진선;김동수
    • 한국지진공학회논문집
    • /
    • 제7권5호
    • /
    • pp.47-56
    • /
    • 2003
  • 본 논문에서는 기존 IWAN 모델을 수정하여 사질토 지반의 반복경화 현상을 나타낼 수 있는 지반의 반복경화모델을 개발하였다. 일반적으로 동적하중을 받는 지반재료는 하중 반복회수에 따라 동적 거동특성이 변화하게 되며 이는 반복 경화 및 연화현상으로 나타난다. 본 논문에서는 등방 경화 또는 등방 연화 거동을 하는 스프링슬라이더 요소를 기존 병렬 IWAN 모델에 추가함으로써 지반의 동적 변형특성 표현이 가능하였다. 등방 경화 거동을 보이는 요소들의 항복 응력은 각각 반복 경화함수에 의하여 증가하도록 정의되었으며, 반복 경화함수는 대칭 한계를 가지는 동적 비틂전단 시험결과로부터 정의되었다. 이렇게 정의된 반복 경화함수는 지반의 동적 변형 특성을 묘사하기 위하여 하나의 독립 변수를 가지게 되며, 사용된 독립변수는 지반의 동적 한계 변형률의 특성을 포함하는 누적전단변형률로 사용되었다. 누적 전단변형률은 반복 전단한계 변형률 이상의 변형률의 누적으로 정의되며, 역재하 및 재재하 곡선에서는 Masing의 법칙을 적용하여 계산될 수 있다. 본 논문에서는 모델의 개발과정을 서술하였고, 모델에 대한 검증은 동반논문인 검증편에 설명하였다.

고유변형도 기반 열변형부의 후속 하중에 기인한 용접 후 변형 해석 (Analysis of Post Weld Deformation at HAZ by External Forces Based on Inherent Strain)

  • 김종태;하윤석;장창두
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.220-227
    • /
    • 2006
  • In case of welding, the inherent strains are generated, because a structure experiences the plastic yielding. The inherent strain is defined as the irrecoverable strain after removing structural restraints and loading. For the analysis method of welding distortion, equivalent loading method based on inherent strain is in general use due to its efficiency and effectiveness. However, it is generally difficult to know the final strain of the welded structure if additional loadings were applied after welding. for this reason, this study introduced the concept of the hardening and added the hardening term to the equivalent loading method based on inherent strain. Therefore, the purposes of this study are to develop the inherent strain formula considering the hardening effect and to calculate residual Stresses Using Proposed inherent Strain. Also, this Study Verified the availability Of proposed inherent strain method by loading-unloading experiment on welded plate.

Analysis of Post-Weld Deformation at the Heat-Affected Zone Using External Forces Based on the Inherent Strain

  • Ha, Yun-Sok;Jang, Chang-Doo;Kim, Jong-Tae;Mun, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.56-62
    • /
    • 2007
  • An analytical method to predict the post-weld deformation at the heat-affected zone (HAZ) is presented in this paper. The method was based on the assumption that the post-weld deformation is caused by external forces resulting from the inherent strain, which is defined as the irrecoverable strain after removing structural restraints and loadings. In general, the equivalent loading method can be used to analyze distortions in welding areas because it is efficient and effective. However, if additional loads are applied after welding, it is difficult to determine the final strain on a welded structure. To determine the final strain of a welded structure at the HAZ more accurately, we developed a modified equivalent loading method based on the inherent strain that incorporated hardening effects. The proposed method was applied to calculate the residual stress at the HAZ. Experiments were also conducted on welded plates to evaluate the validity of the proposed method.

Hypoelastic modeling of reinforced concrete walls

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • 제5권3호
    • /
    • pp.195-216
    • /
    • 2008
  • This paper presents a new hypoelasticity model which was implemented in a nonlinear finite element formulation to analyze reinforced concrete (RC) structures. The model includes a new hypoelasticity constitutive relationship utilizing the rotation of material axis through successive iterations. The model can account for high nonlinearity of the stress-strain behavior of the concrete in the pre-peak regime, the softening behavior of the concrete in the post-peak regime and the irrecoverable volume dilatation at high levels of compressive load. This research introduces the modified version of the common application orthotropic stress-strain relation developed by Darwin and Pecknold. It is endeavored not to violate the principal of "simplicity" by improvement of the "capability" The results of analyses of experimental reinforced concrete walls are presented to confirm the abilities of the proposed relationships.

미고결 셰일의 크립 특성 (Creep Characteristics of Unconsolidated Shale)

  • 장찬동
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.195-200
    • /
    • 2006
  • 실내실험을 통해 미고결 셰일의 압밀은 시간 의존적 비복원 점성변형임을 보였다. 점소성 이론과 Cam-clay 이론을 접목하여 미고결 셰일의 구성방정식이 동항복/정항복면의 크기에 대한 지수함수의 형태로 주어짐을 보였으며 이를 통해 크립 변형은 시간에 대한 로그함수의 형태로 구해짐을 보였다. 실험자료와 이론을 비교하여 구성방정식의 물질상수를 규명한 결과 셰일의 항복점은 변형속도가 10배 증가함에 따라 약 6%의 증가하는 것으로 나타났으며 이는 실내 변형속도 조건에서 규명한 셰일의 물성(항복점, 공극률)을 실제 현장 변형속도 조건에 적용시에 상당한 오차를 유발할 수 있음을 시사한다.

  • PDF

유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측 (Forming Limit Prediction in Tube Hydroforming Processes by Using the FEM and FLSD)

  • 김상우;김정;이정환;강범수
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.527-532
    • /
    • 2005
  • Among the failure modes which can occur in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram (FLD) has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, The application of FLD to hydroforming process, where strain path is no longer linear throughout forming process, may lead to misunderstanding for fracture initiation. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out the state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified by a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the forming severity in hydroforming processes.

유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측 (Forming Limit Prediction in Tube Hydroforming Processes by using the FEM and ELSD)

  • 김상우;김정;이정환;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.92-96
    • /
    • 2005
  • Among the failure modes which can be occurred in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, the path-dependent limitation of FLD makes the application to hydroforming process, where strain path is no longer linear throughout forming process, more careful. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out Ihe state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified with a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the farming severity in hydroforming processes.

  • PDF

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

고강도콘크리트의 피로거동에 관한 실험적 연구 (Experiments for the Fatigue Behavior of High Strength Concrete)

  • 김진근;김윤용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 1992
  • In this paper, the effect of compressive strength on the fatigue behavior of plain concrete was studied. The fatigue behavior of plain concrete in uniaxial compression is somewhat affected by the compressive strength of the concrete. Concrete cylindrical specimens(100$\times$200mm) with compressive strength of 265kg/$\textrm{cm}^2$, 530kg/$\textrm{cm}^2$ , 860kg/$\textrm{cm}^2$ and 1053kg/$\textrm{cm}^2$ were tested and analyzed on the fatigue strength, In addition to fatigue strength, the deformation characteristics of the concrete subjected to fatigue loading was investigated. The fatigue strength was decreased for the high-strength concrete. The deformation studies indicated that the irrecoverable strain in normal strength concrete is greater than that in high strength concrete.

  • PDF

소성불안정성에 의한 관재 하이드로포밍 공정에서의 터짐 불량 예측 (A Prediction of Bursting Failure in Tube Hydroforming Process Based on Plastic Instability)

  • 김상우;김정;박훈재;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined internal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity fur anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy parameter, strain hardening exponent on bursting pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

  • PDF