유한요소법을 이용한 Tonpilz 트랜스듀서의 최적구조 설계

Optimal Structural Design of a Tonpilz Transducer by Means of the Finite Element Method

  • 발행 : 2003.11.01

초록

본 연구에서는 대표적인 수중 음향 트랜스듀서인 Tonpilz 트랜스듀서에 대하여 설계변수들이 트랜스듀서 성능에 미치는 영향을 유한요소 해석을 통하여 파악하였다. 나아가 그 결과들의 통계적 다중 회귀분석을 통하여 응력 강화 (Stress stiffening) 효과를 고려한 공진 주파수, 대역폭 및 발생 음압을 이들 설계변수들의 함수로 도출한 후, 제한 최적화법인 SQP-PD 방법을 이용해 공진 주파수 30,000 Hz 와 -3dB 대역폭 10% 이상을 가지며 최대 음압을 구현할 수 있는 트랜스듀서의 최적구조를 결정하였다. 또한 SQP-PD 방법에 의한 최적값을 유한요소 해석에 의한 값과 비교함으로써 최적값의 타당성을 검증하였고, 본 연구에서 제시한 설계법이 계산시간의 단축과 높은 정확성을 가짐을 확인하였다.

In this study, with the FEM we analyzed the variation of the resonance frequency, bandwidth, and sound pressure of the Tonpilz transducer in relation to its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency, bandwidth, and sound pressure in terms of the design variables. By applying the constrained optimization technique, SQP-PD, to the derived function, we determined the optimal structure of the transducer that could provide the highest sound pressure level at the resonance frequency of 30,000 Hz and having the -3 dB bandwidth more than 10%, The validity of the optimized results was confirmed through comparison of the optimal performance with that of the FEA. The optimal design method proposed could reflect all the cross-coupled effects of multiple structural variables, and could determine the detailed geometry of the transducer with great efficiency and rapidity.

키워드

참고문헌

  1. 강국진, 노용래, 'Class IV Flextensional 트랜스듀서의 주파수 특성 변화에 관한 연구,' 한국음향학회지, 18 (7), 67-73, 1999
  2. 강국진, 노용래, 'Class IV Flextensional 트랜스듀서 최적설계 및 특성해석,' 한국음향학회지, 19 (4). 69-76, 2000
  3. R. Hanel, A. Mues, and R. Sobotta. 'Description of ultrasound transducers through wave parameters,' Ultrasonics, 34, 159-162, 1996 https://doi.org/10.1016/0041-624X(96)81779-3
  4. K. R. Dhilsha, 'Performance of a low frequency. multiresonant broadband Tonpilz transducer,' J. Acoust. Soc. Am., 111 (4), 1692-1694, 2002 https://doi.org/10.1121/1.1456927
  5. Q. Yao, and L. Bj$\o$rn$\o$, 'Broadband Tonpilz underwater acoustic transducers based on multimode optimization,' IEEE UFFC, 44 (5), 1060-1066, 1996
  6. D. W. Hawkins, and P. T. Gough, 'Multiresonance design of a Tonpilz transducer using the finite element method,' IEEE UFFC, 43 (5), 782-790, 1996 https://doi.org/10.1109/58.535479
  7. S. Kaneko, S. Nomoto, H. Yamamori, and K. Ohya, 'Load characteristics of a bolted Langevin torsional transducer.' Ultrasonics, 34, 239-241, 1996 https://doi.org/10.1016/0041-624X(95)00072-B
  8. K. R. Dhilsha, G. Markandeyulu, B. V. P. Subrahmanyeswara Rao, and K. V. S. Rama Rao, 'Design and fabrication of a low frequency giant magnetostrictive transducer,' Journal of Alloys and Compounds, 258, 53-55, 1997 https://doi.org/10.1016/S0925-8388(97)00063-7
  9. F. Claeyssen, N. Lhermet, R. Le Letty, and P. Bouchilloux, 'Actuators, transducers and motors based on giant magnetostrictive materials,' Journal of Alloys and Compounds, 258, 61-73, 1997 https://doi.org/10.1016/S0925-8388(97)00070-4
  10. M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. Mclaughlin, 'Characterization of Terfenol-D for magnetostrictive transducers,' J. Acoust. Soc. Am., 89 (3), 1448-1455, 1991 https://doi.org/10.1121/1.400678
  11. R. O. Kuehl, Design of Experiments: Statistical Principles of Research Design and Analysis, Duxbury Press, Pacific Grove, 2000
  12. R. J. Freund, and W. J. Wilson, Regression Analysis: Statistical Modeling of a Response Variable, Academic Press, San Diego, 1998
  13. A. D. Belegudu, and T. R. Chandrupatla, Optimization Concepts and Applications in Engineering, Prentice Hall, New Jersey, Chap. 5, 141-221, 1999
  14. O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, Peninsulr publishing, Los Altos, Chap. 6, 109-125, 1988
  15. J. I. Im, and Y. R. Roh, 'Design and evaluation of noise suppressing Tonpilz hydrophone structures,' Japanese Journal of Applied Physics, 39 (2A), 517-525, 2000 https://doi.org/10.1143/JJAP.39.517
  16. L. L. Beramnek, Acoustics, American Institute of Physics, New York, Chap. 4, 91-115, 1988
  17. J. R. Oswin, and J. Dunn, 'Frequency, power and depth performance of Class IV flextensional transducers,' in: B. Hamonic and J. N. Decarpigny (Eds.). Power Sonics and Ultrasonic Transducers Design, Springer-Verlag, Berlin, 121-133, 1988
  18. SAS Institute lnc., Strategic Application Software, ver. 8.1, Cary, North Carolina, 2000