Influence of Inorganic Salts on Aqueous Solubilities of Polycyclic Aromatic Hydrocarbons

  • Yim, Soobin (School of Urban and Civil Engineering, Hongik University)
  • Published : 2003.09.01

Abstract

Setschenow constants of six alkali and alkaline earth metal-based electrolytes (i.e., NaCl, KCl, CaCl$_2$, K$_2$SO$_4$, Na$_2$SO$_4$, NaClO$_4$) for three polycyclic aromatic hydrocarbons (PAHs) (i.e., naphthalene, pyrene, and perylene) were investigated to evaluate the influence of a variety of inorganic salts on the aqueous solubility of PAHs. Inorganic salts showed a wide range of K$\_$s/ values (L/mol), ranging from 0.1108 (NaClO$_4$) to 0.6680 (Na$_2$SO$_4$) for naphthalene, 0.1071 (NaClO$_4$) to 0.7355 (Na$_2$SO$_4$) for pyrene, and 0.1526 (NaClO$_4$) to 0.8136 (Na$_2$SO$_4$) for perylene. In general, the salting out effect of metal cations decreased in the order of Ca$\^$2+/>Na$\^$+/>K$\^$+/. The effect of SO$_4$$\^$2-/>Cl$\^$-/>ClO4$\^$-/ was observed for anions of inorganic salts. The K$\_$s/ values decreased in the order of perylene>pyrene>naphthalene for K$_2$SO$_4$. However, the order of decreasing salting out effect for NaCl, KCl, CaCl$_2$, and NaClO$_4$ was perylene>naphthalene>pyrene. Hydration free energy of the 1:1 and 2:1 alkali and alkaline earth metal-based inorganic salts solution was observed to have a meaningful correlation with Setschenow constants. Thermodynamic interactions between PAH molecules and salt solution can be of importance in determining the magnitude of salting out effect for PAHs at a given salt solution.

Keywords

References

  1. Schwarzenbach, R. R., Gschwend, P. M., and Imboden, D.M. Environmental Organic Chemistry, John Wiley & Sons, New York (1993)
  2. Whitehouse, B. G. 'The Effects of Temperature and Salinity on the Aqueous Solubility of Polynuclear Aromatic Hydrocarbons', Mar. Chem., 14, pp. 319-332 (1984) https://doi.org/10.1016/0304-4203(84)90028-8
  3. Gordon, J. E., and Thome R. L. 'Salt Effects on Non-electrolyte Activity Coefficients in Mixed Aqueous Electrolyte solutions -1I. Artificial and Natural Sea Waters', Geochim. Cosmochim. Acta, 31, pp. 2433-2443 (1967a) https://doi.org/10.1016/0016-7037(67)90013-0
  4. Gordon, J. E., and Thorne, R. L. 'Salt Effects on the Activity Coefficient of Naphthalene in Mixed Aqueous Electrolyte Solutions. I. Mixtures of Two Salts', J. Phys. Chem., 71, pp.4390-4399 (1967b) https://doi.org/10.1021/j100872a035
  5. May, W. E. E. 'The Solubility Behavior of Polycyclic Aromade Hydrocarbons in Aqueous Systems', Petroleum in the Marine Environment. in American Chemistry Society, Washington D. C. (1978)
  6. Setschenow, J. 'Ber die Konstitution der Salzlsungen auf Grund Ihres Verhaltens zu Kohlensure', Z Phys. Chem., 4, pp. 117-128 (1889)
  7. Means, J. C. 'Influence of Salinity upon Sediment-water Partitioning of Aromatic Hydrocarbons', Mar. Chem., 51, pp. 3-16 (1995) https://doi.org/10.1016/0304-4203(95)00043-Q
  8. Hegeman, W. J. M., van der Weijden, C. H., and Loch, J. P. 'Sorption of Benzo[a]pyrene and Phenanthrene on Suspended Harbor Sediment as a Function of Suspended Sediment Concentration and Salinity: a Laboratory Study using the Cosolvent Partition Coefficient', Environ. Sci. Tech., 29, pp. 363-371 (1995) https://doi.org/10.1021/es00002a012
  9. Turner, A. and Rawling, M. C. 'The Influence of Salting out on the Sorption of Neutral Organic Compounds in Estuaries', Wat. Res., 35(18), pp. 4379-4389 (2001) https://doi.org/10.1016/S0043-1354(01)00163-4
  10. Xie W. H., Shiu W. Y, and Mackay D. 'A Review of the Effect of Salts on the Solubility of Organic Compounds in Seawater', Mar. Environ. Res. 44(4), pp. 429-444 (1997) https://doi.org/10.1016/S0141-1136(97)00017-2
  11. Hashimoto, Y., Tokur, K., Kishi, H., and Strachan, W. M. J. 'Prediction of Seawater Solubility of Aromadc Compounds', Chemosphere, 13(8), pp. 881-888 (1984) https://doi.org/10.1016/0045-6535(84)90161-9
  12. Whitehouse, B. G. 'Observation of Abnormal Solubility Behavior of Aromatic Hydrocarbons in Seawater', Mar. Chem., 17, pp. 277-284 (1985) https://doi.org/10.1016/0304-4203(85)90001-5
  13. McDevit, W. F., and Long, F. A. 'The Activity Coefficient of Benzene in Aqueous Salt Solutions', J. Am. Chem. Soc., 74, pp. 1773-1777 (1952) https://doi.org/10.1021/ja01127a048
  14. Schwarz, F. P. 'Determination of Temperature Dependence of Solubilities of Polycyclic Aromatic Hydrocarbons in Aqueous Solutions by a Ruorescence method', J. Chem. Eng. Data, 22, pp. 273-277 (1977) https://doi.org/10.1021/je60074a010
  15. Miller, M. M., Wasik, S. P., Huang, G. L., Shiu, W. Y, and Mackay, D. 'Relationships between Octanol-water Partition Coefficient and Aqueous Solubility', Environ. Sci. Tech. 19, pp. 522-529 (1985) https://doi.org/10.1021/es00136a007
  16. Davis H. G., and Gottlieb, S. 'Density and Refractive Index of Multi-ring Aromatic Compounds in the Liquid State', Fuel, 8, pp. 37-54 (1962)
  17. Yalkowsky, S. H., and Valvani S. C. 'Solubilities and Partitioning. 2. Relationships between Aqueous Solubilities, Partition Coefficients, and Molecular Surface Areas of Rigid Aromatic Hydrocarbons', J. Chem. Eng. Data. 24, pp. 127-129 (1979) https://doi.org/10.1021/je60081a021
  18. Burgess, J. Ions in Solutions - Basic Principles of Chemical Interactions, Ellis Horwood, Chichester (1988)