Robust Controllers for Large Space Structures Using an SPR Filter and Displacement Feedback

변위ㆍ정보와 SPR 필터를 이용한 대형 우주 구조물의 강인 제어기에 관한 연구

  • 손영익 (명지대 공대 전기공학과) ;
  • 심형보 (서울대 공대 전기컴퓨터공학부) ;
  • 조남훈 (숭실대 공대 전기제어시스템공학부)
  • Published : 2003.09.01

Abstract

A robust controller for large space structures(LSS) is studied from passivity point of view. While velocity sensors are commonly used for proportional-derivative (PD) control law to stabilize large space structures, if the structure can be controlled without velocity measurements, it is desirable against the failure of velocity sensors and for the cost reduction of the sensing system. In a recent result a dynamic output feedback control law has been provided using only displacement measurements. This paper presents a passivity-based controller design method and provides an alternative stability analysis tool for the previous displacement feedback robust control law. The closed-loop system can be viewed as a feedback interconnection of a passivated large space structure (LSS) and a strictly positive real (SPR) system.

Keywords

References

  1. Y. Fujisaki, M. Ikeda and K. Miki, 'Robust stabilization of large space structures via displacement feedback,' IEEE Trans. Automat. Contr., 46(12):1993--1996, 2001 https://doi.org/10.1109/9.975507
  2. S.M. Joshi, 'Robustness properties of collocated controllers for flexible spacecraft,' J. Guidance Control, vol. 9, no. 1, pp. 85-91, 1986 https://doi.org/10.2514/3.20071
  3. H. Kaufman, I. Bar-Kana and K. Sobel, Direct Adaptive Control Algorithms, Springer-Verlag, 2nd edition, 1998
  4. R. Ortega, A. Loria, P.J. Nicklasson, and H. Sira Ramirez, Passivity-based Control of Euler-Lagrange Systems. Springer-Verlag, 1998
  5. C.I. Bymes, A. Isidori, and J.C.Willems, 'Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems,' IEEE Trans. Automat. Contr., vol.36, no. 11, pp. 1228-1240, 1991 https://doi.org/10.1109/9.100932
  6. R. Sepulchre, M. Jankovic, and P.V. Kokotovic, Constructive Nonlinear Control, Springer-Verlag, 1997
  7. M.G. Safonov, E.A. Jonckheere, M. Verma, and D.J.N. Limebeer, 'Synthesis of positive real multivariable feedback systems,' Int. J. Control, 45(3):817-842, 1987 https://doi.org/10.1080/00207178708933772
  8. W. Sun, P.P.,Khagonekar, and D. Shim, 'Solution to the positive real control problem for linear time-invariant systems,' IEEE Trans. Automat. Contr, vol.39, pp. 2034-2046, 1994 https://doi.org/10.1109/9.328822
  9. C.H. Huang, P.A. Ioannou, J. Maroulas, and M.G. Safonov, 'Design of strictly positive real systems using constant output feedback,' IEEE Trans. Automat. Contr., vol.44, no.3, pp.569-573, 1999 https://doi.org/10.1109/9.751352
  10. H.K. Khalil, Nonlinear Systems, Prentice-Hall, 2nd Ed., 1996
  11. L. Lanari and J.T. Wen, 'Asymptotically stable set point control laws for flexible robots,' Systems & Control Letters, vol.19, pp.119-129, 1992 https://doi.org/10.1016/0167-6911(92)90095-A
  12. S. Nicosia and P. Tomei, 'Robot control by using only joint position measurements,' IEEE Trans. Automat. Contr., vol.35, no.9, pp.1058-1061, 1990 https://doi.org/10.1109/9.58537