DOI QR코드

DOI QR Code

졸겔법에 의한 Ba-ferrite분말의 제조 및 자기적 특성 연구

Fabrication and Magnetic Properties of Ba Ferrite Powders by Sol-gel Process

  • 발행 : 2003.08.01

초록

BaFe$_{12}$ O$_{19}$ 분말을 sol-gel법을 이용하여 제조하였다. X-선 회절분석결과 hexagonal 결정구조를 갖으며 격자상수 a와 c는 a=5.822, c=23.215 $\AA$으로 분석되었다 뫼스바우어 분광기 실험을 통해 Curie온도는 780$\pm$3K 임을 확인할 수 있었으며, 4f$_2$, 2a. 4f$_1$, 12k, 2b의 5-site에 해당하는 각각의 이성질체이동값이 상온에서 0.26, 0.24, 0.15, 0.25, 0.24 mm/s로서 Fe$^{3+}$ 의 상태로 존재함을 알 수 있었다. 접근의 법칙(Law of approach to saturation)에 의해 결정자기 이방성 에너지 H$_{A}$ 와 결정자기 이방성 상수 $K_1$를 계산하였으며 95$0^{\circ}C$에서 열처리한 바륨페라이트의 경우 $K_1$ = 2.5 ${\times}$ $10^{6}erg/cm^3$ 그리고 H$_{A}$ = 14 kOe 값을 가졌다.

M-type hexagonal BaFe$\sub$12/O$\sub$19/ ferrite powder was prepared by sol-gel process. The M-type hexagonal structure with ${\alpha}$ = 5.882 and c = 23.215 ${\AA}$ and its Curie temperature T$\sub$C/ was determined 780${\pm}$3 K. The isomer shifts of ,4f$_2$, 2a. 4f$_1$, 12k, and 2b were indicated 0.26, 0.24, 0.15, 0.25, and 0.24 mm/s, therefore, the valence states of the Fe ions were ferric (Fe$\^$3+/). By the law of approach to saturation (LAS), the effective anisotropy field H$\sub$A/ and crystalline anisotropy constant K$_1$ were estimated. The value of K$_1$ and H$\sub$A/ were K$_1$ = 2.5${\times}$10$\^6/erg/cm^3$ and H$\sub$A/ = 14 kOe, respectively.

키워드

참고문헌

  1. IEEE Trans. on Magn. Mag. v.22 D.E.Speliotis https://doi.org/10.1109/TMAG.1986.1064597
  2. IEEE Trans. on Magn. Mag. v.21 T.Fugiwara
  3. J. Appl. Phys. v.83 no.3 M.J.Hurben;C.E.Patton https://doi.org/10.1063/1.367194
  4. Appl. Phys. Lett. v.79 no.3 L.V.Saraf(et al.) https://doi.org/10.1063/1.1385348
  5. J. Appl. Phys. v.89 no.11 N.Matsushita(et al.) https://doi.org/10.1063/1.1359468
  6. Ferromagnetic Materials v.3 H.Kojima https://doi.org/10.1016/S1574-9304(05)80091-4
  7. Mineral. Geol. v.12A Adelskold,V.;Arkiv Kemi
  8. J. Magn. Magn. Mater. v.219 S.Wang;J.Ding;Y.Shi;Y.J.Chen https://doi.org/10.1016/S0304-8853(00)00450-9
  9. J. Alloys Comp. v.281 J.Ding;W.F.Miao;P.G.McCormick;R.Street https://doi.org/10.1016/S0925-8388(98)00766-X
  10. J. Magn. Magn. Mater. v.184 G.Albanese;B.E.Watts;F.Leccabue;S.D.Castanon https://doi.org/10.1016/S0304-8853(97)01162-1
  11. J. Magn. Magn. Mater. v.175 Zai Bing Guo(et al.) https://doi.org/10.1016/S0304-8853(97)00206-0
  12. J. Appl. Phys. v.87 no.9 C.S.Kim;S.W.Lee;S.Y.An https://doi.org/10.1063/1.372668
  13. J. Phys. D: Appl. Phys. v.33 E.E.Rams;R.M.Garcia;E.Reguera;H.M.Sanchez;H.Y.Madeira
  14. IEEE Trans. on Mag. v.35 no.5 C.S.Kim;S.Y.An;J.H.Son;J.G.Lee;H.N.Oak https://doi.org/10.1109/20.801114
  15. J. Mater. Sci. v.20 M.A.G.C.Van de Graaf;J.H.H.Termaat;A.J.Burggraaf https://doi.org/10.1007/BF01026338
  16. J. Magn. Magn. Mater. v.223 G.Mendoza Suarez(et al.) https://doi.org/10.1016/S0304-8853(00)00583-7
  17. Element of x-ray diffraction B.D.Culity
  18. Philips Res. Rep. v.9 Gorter,E.W.
  19. J. de Phys. v.C1 G.Albanese
  20. Phys. Rev. B v.24 H.N.Ok;K.S.Baek;C.S.Kim https://doi.org/10.1103/PhysRevB.24.6600
  21. J. Magn. Magn. Mater. v.115 Z.Yang;H.Zeng;D.Han;J.Liu;S.Geng https://doi.org/10.1016/0304-8853(92)90185-Q