• Title/Summary/Keyword: Ba-페라이트

Search Result 51, Processing Time 0.033 seconds

Role of Buffer Layer in Ba-Ferrite/α-Al2O3/SiO2 Magnetic Thin Films (Ba-페라이트/α-Al2O3/SiO2 자성박막에서 버퍼층의 역할)

  • Cho, Tae-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.283-286
    • /
    • 2006
  • We have studied the role of ${\alpha}-Al_{2}O_{3}$ buffer layer as a diffusion barrier in the Ba-ferrite/$SiO_{2}$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite $(1900-{\AA}-thick)/SiO_{2}$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_{2}O_{3}$ buffer layer ($110-{\AA}-thick$) in the interface of Ba-ferrite/$SiO_{2}$ thin film. During the annealing of Ba-ferrite/${\alpha}-Al_{2}O_{3}/SiO_{2}$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The magnetic properties, such as saturation magnetization and intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_{2}O_{3}$ buffer layer. Our study suggests that the ${\alpha}-Al_{2}O_{3}$ buffer layer act as a useful interfacial diffusion barrier in the Ba-ferrite/$SiO_{2}$ magnetic thin films.

Crystal structure and microstructure of Z-type hexaferrite (Ba, La)Co2Fe24O41 by molten salt synthesis (용융염 합성법에 의한 Z형 육방정 페라이트 (Ba, La)Co2Fe24O41계의 결정구조와 미세구조)

  • Lee, Do Hyeok;Kwon, Chae-Yeon;Moon, Kyoung-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.197-202
    • /
    • 2021
  • Synthesis of Z-type hexaferrite Ba3Co2Fe24O41 (Ba3Z) and Ba1.5La1.5Co2Fe24O41 (Ba1.5La1.5Z) powders were tried using molten salt synthesis after primary calcination. Ba3Z calcined at 1000℃ was formed with both M-type and Y-type hexaferrite, and then Z-type was obtained when sintered with molten salt at 1150℃ and 1200℃. In the case of Ba1.5La1.5Z calcined at 1000℃, however, M-type hexaferrite, CoFe2O4 (Spinel phase), and LaFeO3 were synthesized. As a result, Z-type hexaferrite was not synthesized after sintering with molten salt. In addition, the aspect ratio of the particles decreased as the sintering temperature increased with molten salt synthesis. To obtain a single-phase Ba1.5La1.5Z with a high aspect ratio, it is expected the raw materials have to calcine below the temperature of a spinel phase formation before sintering with molten salt.

Development of EM Wave Absorbers for GHz Frequency (GHz 대역용 전파흡수체의 개발)

  • 문상현;신승재;김동일;송재만;최정현;김기만
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.17-22
    • /
    • 2004
  • We prepared EM wave absorbers by using recycled Ba and Sr ferrites for GHz frequency, and investigated the effects of carbon additions, thickness and preparation temperatures on their EM wave absorption properties. We clarified that it is very important to consider carbon amounts in Ba and Sr ferrites and preparation temperature for Ba and Sr ferrite EM wave absorbers with high quality. In this study, the developed a EM Wave absorber satisfying over 20 dB.

  • PDF

Development of Composite Ba Ferrite EM Wave Absorbers for GHz Frequency (GHz 대역용 복합형 Ba 페라이트 전파흡수체의 개발)

  • 문상현;신승재;송재만;김동일;김기만
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1329-1334
    • /
    • 2003
  • We prepared EM wave absorbers by using recycled Ba ferrite far GHz frequency, and investigated the effects of carbon additions and preparation temperatures on their EM wave absorption properties. We clarified that it is very important to consider carbon amounts in Ba ferrite and preparation temperature for Ba ferrite EM wave absorbers with high quality.

PROPERTIES OF Ba-FERRITES PREPARED BY HIGH ENERGY MILLING (High Energy Milling으로 제조한 Ba 페라이트의 특성)

  • 남중희;김민상;김효태
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.116-117
    • /
    • 2002
  • High energy mi]ling은 mechanical alloying을 일컫는 분말 제조 공정으로서 금속 뿐 아니라 세라믹스 분말 합성에도 많이 응용되고 있으며, 입자크기의 나노화와 일반적인 세라믹 분말의 특성을 개질할 수 있다는 특징을 갖고 있어서 다양한 연구 결과가 보고되고 있다[1-2]. Ba 및 Sr 페라이트와 같은 육방정 페라이트는 보자력(high coercivity)이 높은 특성을 가지므로 영구자석용, 기록재료용 등으로 광범위하게 사용되어온 재료이다. 이와 같은 높은 보자력을 유지하기 위해서는 입자크기가 단자구 입경(<1 $\mu\textrm{m}$) 보다 작아야 하기 때문에, 초미립자 합성에 관한 많은 연구가 진행되어 왔다[3-4]. (중략)

  • PDF

The Effect of Ba and Fe Concentration on Soft Magnetic Properties of Z-Type Barium Ferrite (Z-Type 바리움 페라이트 분말의 연자성 특성에 미치는 Ba 및 Fe 농도의 영향)

  • Cho, Kwang-Muk;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • Z-type barium ferrite [($Ba_{3}Co_{0.8}Zn_{1.2}Fe_{24}O_{41}$, $Ba_{3+{\delta}}Co_{0.8}Zn_{1.2}Fe_{24}O_{41}$ ${\delta}$ = 3, 5, 7, 13 wt%. $Ba_{3}Co_{0.8}Zn_{1.2}Fe_{24+{\delta}}O_{41}$ ${\delta}$ = 5, 7, 10 wt% )] were synthesized using co-precipitation method. The microstructure and magnetic properties of synthesized particles were investigated. In all prepared particles M-type Ba ferrite is identified with Z-type Ba ferrite together. It is found that particles having 7 wt% for Ba and 5 wt% for Fe excess addition revealed high saturation magnetization, respectively. All synthesized particles showed relatively high coercivity for device application. This result may be attributed to the contribution of M-type Ba ferrite. Ba and Fe excess addition was not affected to the structural change of CoZnZ Ba ferrite. The certain amount of excess additions of Ba and Fe and the 2 step heat-treatment may be beneficial to the improvement of soft magnetic properties of Z-type barium hexa-ferrite

Exchange-coupling Interaction and Magnetic Properties of BaFe12O19/Ni0.5Zn0.5Fe2O4 Nanocomposite Ferrite (BaFe12O19/Ni0.5Zn0.5Fe2O4 나노복합체 Ferrite의 Exchange-coupling 상호 작용과 자기 특성)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.81-85
    • /
    • 2014
  • Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanocomposite ferrite were prepared by sol-gel combustion method. Nanocomposite was calcined at temperature range of $600{\sim}900^{\circ}C$ for 1 h. According to the diffraction patterns, hard/soft nanocomposite was indicated to the coexistence of the magnetoplumbite structural $BaFe_{12}O_{19}$ and spinel $Ni_{0.5}Zn_{0.5}Fe_2O_4$ and agree with the standard data (JCPDS 10-0325). The particle size of nanocomposite turn out to be less than 90 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite ($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that for the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite. $(BH)_{max}$ is increased, generally.

Effects of Metal Ions Mole Ratio, pH and Heat Treatment Condition on the Magnetic Properties and Formation of Co-precipitated M-type Barium Ferrite Powders (공침법으로 합성한 바륨 페라이트(BaM)의 형성과 자기적 성질에 미치는 금속이온 몰 비 및 pH와 열처리 조건의 영향)

  • Baek, In-Seung;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.209-215
    • /
    • 2009
  • M-type barium ferrite (BaFe12O19) powders were synthesized through the co-precipitation method. Starting material composition $Fe^{3+}:\;Ba^{2+}$ mole ratio was fixed as 8 and the relative amount of $Fe^{3+}$ and $Ba^{2+}$ was controlled. Structure and magnetic properties and powder morphology were investigated using XRD, SEM, VSM. Powder showing high coercivity and small magnetization was obtained at pH8 and $Fe_{3+}:\;Ba_{2+}$ of 12 : 1.5. Small magnetization value was originated from the existence of ${\alpha}-Fe_2O_3$. Single-phase Mtype barium ferrite were obtained regardless of the heat treatment condition and the amount of $Fe_{3+}\;and\;Ba_{2+}$ at pH$\approx$10. The largest value of magnetization (55.7 emu/g) under investigation were obtained when $Fe_{3+}:\;Ba_{2+}$ of 13.6 : 1.7 and furnace cooled powder in $O_2$. Particle size of powder was in the range of 50~200 nm.

Preparation and Characteristics of $Fe_3O_4$-Encapsulated $BaTiO_3$ Powder by Ultrasound-Enhanced Ferrite Plating (초음파 여기 페라이트 플레이팅 법에 의한 $Fe_3O_4/BaTiO_3$ 복합 분말의 제조 및 특성)

  • 최성현;오재희
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.98-99
    • /
    • 2002
  • 페라이트 플레이팅(ferrite plating)법은 10$0^{\circ}C$ 이하의 낮은 온도에서 박막을 제작할 수 있기 때문에 비 내열성 물질(플라스틱, GaAs, 종이류 등)을 기판으로 사용 가능하고, 일종의 무전해 도금법으로서 피도금체의 형상에 관계없이 균일한 두께의 페라이트 막이 얻어지며, PVD 및 CVD방법에 비하여 복잡한 장치를 필요로 하지 않기 때문에 특히 경제적인 측면에서 제작비용을 낮게 할 수 있다는 장점이 있다[1]. (중략)

  • PDF

Magnetic Properties and Structure of Co-precipitated Barium Ferrite (BaM) Powders (공침법으로 합성한 바륨 페라이트(BaM) 분말의 결정구조와 자기적 성질)

  • Baek, In-Seung;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.134-142
    • /
    • 2010
  • Barium ferrite ($BaFe_{12}O_{19}$) powders were synthesized by the co-precipitation method. $Fe^{3+}:Ba^{2+}$ mole ratio was fixed 8 and relative amount of $Fe^{3+}$ and $Ba^{2+}$ was controlled. The effects of the pH (= 8, 9, 10), calcination temperature and time on the morphology, structure and magnetic properties of the barium ferrite particles are characterized using XRD, FESEM, and VSM respectively. Coercivity and magnetization value of powders were changed with calcination temperature and time, relative amount of $Fe^{3+}$ and $Ba^{2+}$ and pH. Single-phase barium ferrite was obtained when pH value was 9 in the investigated range of $Fe^{3+}:Ba^{2+}$ relative amount and secondary phases were appeared at $Fe^{3+}:Ba^{2+}$ relative amount of 14.4 : 1.8. The largest value of magnetization (65.7 emu/g) was obtained when $Fe^{3+}:Ba^{2+}$ mole ratio was 12.8 : 1.6 and calcination temperature was $900^{\circ}C$ with air calcination atmosphere. The largest value of coercivity (5280 Oe) was obtained with $O_2$ calcination atmosphere.