두 개의 랩어라운드 에지를 갖는 메쉬의 고장 해밀톤 성질

Fault Hamiltonicity of Meshes with Two Wraparound Edges

  • 발행 : 2003.08.01

초록

본 논문에서는 첫 행과 마지막 행에 두개의 랩어라운드 에지를 갖는 m$\times$n (m$\geq$2, n$\geq$3) 메쉬 연결망에서의 고장 해밀톤 성질들에 대해 고려한다. 제시한 연결망이 n이 홀수일 때 해밀톤 연결된 그래프이며 1-고장 해밀톤 사이클을 지님을 보인다. 그리고 n이 짝수일 때 강한 해밀톤 laceable 그래프이며 1-정점 고장 강한 해밀톤 laceable 그래프임을 보인다.

In this paper, we consider the hamiltonian properties of m$\times$n (m$\geq$2, n$\geq$3) mesh networks with two wraparound edges on the first row and last row, called M$_2$(m, n), in the presence of a faulty node or link. We prove that M$_2$(m, n) with odd n is hamiltonian-connected and 1-fault hamiltonian. In addition, we prove that M$_2$(m, n) with even n is strongly hamiltonian laceable and 1-vertex fault tolerant strongly hamiltonian laceable.

키워드

참고문헌

  1. F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. San Mateo, Cailf.: Morgan-Kaufmann, 1992
  2. T. Leighton, B. Maggs and R. Sitaraman, 'On the fault tolerance of some popular bounded-degree networks,' Proc. IEEE Symp. Foundations of Computer Science, pp. 542-552, 1992 https://doi.org/10.1109/SFCS.1992.267797
  3. V. Balasubramanian and P. Banerjee, 'A fault tolerant massively parallel processing architecturee,' Journal of Parallel and Distributed Computing, Vol. 4, pp. 363-383, 1987 https://doi.org/10.1016/0743-7315(87)90025-6
  4. M. Ajtai, N. Alon, J. Bruck, R. Cypher, C. T. Ho, M. Naor and E. Szemeredi, 'Fault tolerant graphs, perfect hash functions and disjoint paths,' Proc. IEEE Symp. Foundations of Computer Science, pp. 693-702, 1992 https://doi.org/10.1109/SFCS.1992.267781
  5. J. Bruck, R. Cypher and C. Ho, 'Fault-tolerant meshes with small degree,' SIAM J. Computing, Vol. 26, No. 6, pp. 1764-1784, 1997 https://doi.org/10.1137/S0097539794274994
  6. L. Zhang, 'Fault-tolerant meshes with small degree,' IEEE Trans. Computers, Vol. 51, No. 5, pp. 553-560, 2002 https://doi.org/10.1109/TC.2002.1004594
  7. H. C. Kim and J. H. Park, 'Fault hamiltonicity of product graph oh path and cycle,' International Computing and Combinatorics Conference (COCOON)2003, accepted for publication
  8. S. Kim, S. R. Maeng and H. Yoon, 'Embedding of rings in 2 D meshes and tori with faulty nodes,' Journal of Systems Architecture, Vol. 43, pp. 643-654, 1997 https://doi.org/10.1016/S1383-7621(96)00120-8
  9. S. Y. Hsieh, G. H. Chen and C. W. Ho, 'Hamiltonian laceability of star graphs,' Networks, Vol. 36, No. 4, pp. 225-232, 2000 https://doi.org/10.1002/1097-0037(200012)36:4<225::AID-NET3>3.0.CO;2-G
  10. C. C. Chen and N. F. Quimpo, 'On strongly hamiltonian abelian group graphs,' Combinatorial Mathematics VIII. Lecture Notes in Mathematics, Vol. 884, pp. 23-34, 1981 https://doi.org/10.1007/BFb0091805
  11. A. Itai, C. H. Papadimitriou and J. L. Czwarcfiter, 'Hamiltonian paths in grid graphs,' SIAM J. Computing, Vol. 11, No. 4, pp. 676-686, 1982 https://doi.org/10.1137/0211056
  12. H. C. Kim and J. H. Park, 'Fault hamiltonicity of two dimensional torus networks,' Workshop on Algorithms and Computation (WAAC'00), pp. 110-117, 2000
  13. C. H. Tsai, J. M. Tan, Y. C. Chuang and L. H. Hsu, 'Fault free cycles and links in faulty recursive circulant graphs,' Proceedings of the ICS 2000 Workshop on Algorithms and Theory of Computation, pp. 74-77, 2000
  14. W. T. Huang, Y. C. Chuang, J. J. Tan and L. H. Hsu, 'On the fault-tolerant hamiltonicity of faulty crossed cubes,' IEICE Trans. Fundamentals, Vol. E85-A, No. 6, pp. 1359-1370, 2002