Chemical and Micro-Structural Changes in Glass-Like Carbon during High Temperature Heat Treatment

  • Lim, Yun-Soo (Department of Ceramic Engineering, Myongji University) ;
  • Kim, Hee-Seok (Department of Ceramic Engineering, Myongji University) ;
  • Kim, Myung-Soo (Department of Chemical Engineering, Myongji University) ;
  • Cho, Nam-Hee (Department of Materials Science and Engineering, Inha University) ;
  • Sahn Nahm (Department of Materials Science and Engineering, Korea University)
  • 발행 : 2003.04.01

초록

A glass-like carbon was fabricated using furan resin. The influence of heat treatment temperature during fabrication process on the chemical and micro-structural changes was studied by various analytical and spectroscopic methods including TGA, FT-IR, CHN, TEM and XRD. The chemical resistance properties of the fabricated glass-like carbon were also investigated. It has been found that the heat-treated samples at higher temperature up to 2600 $^{\circ}C$ in $N_2$ atmosphere had little weight loss, small amounts of functional groups, and high carbon content. The fabricated glass-like carbons upon heat treatment at 2600 $^{\circ}C$ showed an amorphous stage without any grain growth and/or reconstruction of structure. The glass-like carbon had much better chemical resistance than the artificial graphite, and exhibited a high chemical resistance due to its low surface areas, minimum impurities, and low graphite crystallites.

키워드

참고문헌

  1. Carbon v.7 E. Fitzer; W. Schaffer;S. Yamada https://doi.org/10.1016/0008-6223(69)90518-1
  2. J. Mater. Res. v.11 K. P. Constant;J.-R. Lee;Y.-M. Chiang https://doi.org/10.1557/JMR.1996.0297
  3. Carbon v.29 M. Nakamizo https://doi.org/10.1016/0008-6223(91)90014-A
  4. Carbon v.21 D. B. Fishbach;M.E. Rorabaugh https://doi.org/10.1016/0008-6223(83)90134-3
  5. Carbon v.39 K. Fukuyama;T. Nishozawa;K. Nishikawa https://doi.org/10.1016/S0008-6223(00)00313-4
  6. Carbon v.15 F. Rousseaux;D. Tchoubar https://doi.org/10.1016/0008-6223(77)90019-7
  7. Carbon v.6 H. Honda;K. Kobayashi;S. Sugawara https://doi.org/10.1016/0008-6223(68)90091-2
  8. Carbon v.7 D. B. Fischbach
  9. Carbon v.39 E. C. Botellho;N. Scherbakoff;M.C. Rezende https://doi.org/10.1016/S0008-6223(00)00080-4
  10. Carbon v.23 J. L. Kaae https://doi.org/10.1016/0008-6223(85)90194-0
  11. Carbon v.10 W. J. Gary;W.C. Morgan;J. H. Cox;E. M. Woodruff https://doi.org/10.1016/0008-6223(72)90048-6
  12. Carbon v.39 K. Fukuyama;T. Nishozawa;K. Nishikawa https://doi.org/10.1016/S0008-6223(01)00014-8
  13. Carbon v.29 A. Yoshida;Y. Kaburagi;Y. Hishiyama https://doi.org/10.1016/0008-6223(91)90027-G
  14. Carbon v.24 Z. Lausevic;G. M. Jenkins https://doi.org/10.1016/0008-6223(86)90156-9
  15. Carbon v.19 S. Bose;R. H. Bragg https://doi.org/10.1016/0008-6223(81)90075-0
  16. Carbon v.40 L. A. Pesin;E. M. Baitinger
  17. Proc. Royal Soc. London v.A327 G. M. Jenkins;K. Kawamura;L. L. Ban
  18. Chemistry and Physics of Carbon v.22 A. Oberlin;P. A. Thrower(Ed.)
  19. Tanso v.200 I. Mochida
  20. Carbon v.8 E. Fitzer;W. Schafer https://doi.org/10.1016/0008-6223(70)90075-8
  21. Carbon v.4 K. Ouchi https://doi.org/10.1016/0008-6223(66)90009-1
  22. Carbon v.32 A. Shindo;K. Izumino https://doi.org/10.1016/0008-6223(94)90107-4
  23. Carbon v.32 T. Kyotani;H. Yamada;N. Sonobe;A. Tomita https://doi.org/10.1016/0008-6223(94)90082-5