DOI QR코드

DOI QR Code

Properties and Applications of Magnetic Tunnel Junctions

  • Reiss, G. (University of Bielefeld, Department of Physics, Unversitatsstrasse) ;
  • Bruckl, H. (University of Bielefeld, Department of Physics, Unversitatsstrasse) ;
  • Thomas, A. (University of Bielefeld, Department of Physics, Unversitatsstrasse) ;
  • Justus, M. (University of Bielefeld, Department of Physics, Unversitatsstrasse) ;
  • Meyners, D. (University of Bielefeld, Department of Physics, Unversitatsstrasse) ;
  • Koop, H. (University of Bielefeld, Department of Physics, Unversitatsstrasse)
  • Published : 2003.03.01

Abstract

The discoveries of antiferromagnetic coupling in Fe/Cr multilayers by Grunberg, the Giant Magneto Resistance by Fert and Grunberg and a large tunneling magnetoresistance at room temperature by Moodera have triggered enormous research on magnetic thin films and magnetoelectronic devices. Large opportunities are especially opened by the spin dependent tunneling resistance, where a strong dependence of the tunneling current on an external magnetic field can be found. We will briefly address important basic properties of these junctions like thermal, magnetic and dielectric stability and discuss scaling issues down to junction sizes below 0.01 $\mu\textrm{m}$$^2$with respect to single domain behavior, switching properties and edge coupling effects. The second part will give an overview on applications beyond the use of the tunneling elements as storage cells in MRAMs. This concerns mainly field programmable logic circuits, where we demonstrate the clocked operation of a programmed AND gate. The second 'unconventional' feature is the use as sensing elements in DNA or protein biochips, where molecules marked magnetically with commercial beads can be detected via the dipole stray field in a highly sensitive and relatively simple way.

Keywords

References

  1. Phys. Rev. Lett. v.57 P. Grunberg;R. Schreiber;Y. Pang;M. B. Brodsky;H. Sowers https://doi.org/10.1103/PhysRevLett.57.2442
  2. Phys. Rev. Lett. v.74 J. S. Moodera;L. R. Kinder;T. M. Wong;R. Meservey https://doi.org/10.1103/PhysRevLett.74.3273
  3. J. Magn. Magn. Mater. v.139 T. Miyazaki;N. Tezuka https://doi.org/10.1016/0304-8853(95)90001-2
  4. Phys. Rev. Lett. v.74 J. S. Moodera;L. R. Kinder;T. M. Wong;R. Meservey https://doi.org/10.1103/PhysRevLett.74.3273
  5. J. Appl. Phys. v.85 S. S. P. Parkin;K. P. Roche;M. G. Samant;P.M. Rice;R. B. Beyers;R. E. Scheuerlein;E. J. O'Sullivan;S. L. Brown;J. Bucchigano;D. W. Abraham;Y.Lu;M. Rooks;P. L. Trouiloud;R. A. Wanner;W. J. Gallagher https://doi.org/10.1063/1.369932
  6. Appl. Phys. Lett. v.73 R. C. Sousa;J. J. Sun;V. Soares;P. P. Freitas;A. Kling;M. F. da Silva;J. C. Soares https://doi.org/10.1063/1.122747
  7. J. Appl. Phys. v.83 M. Sato;H. Kikuchi;K. Kobayashi https://doi.org/10.1063/1.367933
  8. J. Appl. Phys. v.87 J. Schmalhorst;H. Bruckl;G. Reiss;G. Gieres;M. Vieth;J. Wecker https://doi.org/10.1063/1.373291
  9. Appl. Phys. Lett. v.80 R. Richter;L. Bar;J. Wecker;G. Reiss https://doi.org/10.1063/1.1449536
  10. IEEE Trans. Magnet. A Biochip based on Magnetoresistive Sensors J. Schotter;P. B. Kamp;A. Becker;A. Puhler;D. Brinkmann;W. Schepper;H. Bruckl;G. Reiss
  11. Phys. Rev. B v.56 A. M. Bratkovsky https://doi.org/10.1103/PhysRevB.56.2344
  12. Appl. Phys. Lett. v.80 M. Tsunoda;K. Nishikawa;S. Ogata;M. Takahashi https://doi.org/10.1063/1.1475363
  13. Science v.281 S. Gider;B.-U. Runge;A. C. Marley;S. S. P. Parkin https://doi.org/10.1126/science.281.5378.797
  14. Phys. Rev. Lett. v.84 L. Thomas;J. Luning;A. Scholl;F. Nolting;S. Andres;J. Stohr;S. S. P. Parkin https://doi.org/10.1103/PhysRevLett.84.3462
  15. Science v.286 M. R. McCartney;R. E. Dunin-Borkowski;M. R. Scheinfein;D. J. Smith;S. Gider;S. S. P. Parkin https://doi.org/10.1126/science.286.5443.1337
  16. J. Magn. Magn. Mater. v.165 H. A. M. van den Berg;W. Clemens;G. Gieres;G. Rupp;M. Vieth;J. Wecker;S. Zoll https://doi.org/10.1016/S0304-8853(96)00607-5
  17. J. Appl. Phys. v.91 H. Bruckl;J. Schmalhorst;H. Boeve;G. Gieres;J. Wecker https://doi.org/10.1063/1.1447871
  18. J. Appl. Phys. Influence of Boundary roughness on magnetization reversal in submicron sized magnetic tunnel junctions D. Meyners;H. Bruckl;G. Reiss
  19. Jap. J. Appl. Phys. v.41 H. Kubota;G. Reiss;H. Bruckl;W.Schepper;J. Wecker;G. Gieres https://doi.org/10.1143/JJAP.41.L180
  20. Science v.296 D. A. Allwood;G. Xiong;M. D. Cooke;C. C. Faulkner;D. Atkinson;V. Vernier;R. P. Cowburn