DOI QR코드

DOI QR Code

Study on Regrouping of Gray Gases in spectral WSGGM for Arbitrary Mixtures of CO2 and H2O Gases

이산화탄소-수증기 혼합가스에 대한 파장별 회색가스가중합법에서 회색가스재조합에 대한 연구

  • Published : 2003.02.01

Abstract

The WSGG-based narrow band model was employed to solve the radiative transfer equations along isothermal and non-isothermal paths through $CO_2-H_2O-N_2$ gas mixtures at 1 atm. When the WSGGM is applied for arbitrary gas mixtures by considering the multiplication property of transmissivity in overlapping bands, the number of gray gases is significantly increased. To reduce the computation time, three different regrouping methods for the gray gases are tested in obtaining the mean absorption coefficient for each gray gas group. Among them, the regrouping method by minimizing the regrouping error shows the best results. For the isothermal media, 10 gray gases show fairly good agreement with the results by statistical narrow band(SNB) model which are regarded as reference solutions. For non-isothermal media, 20 gray gases show good agreement with reference solutions.

Keywords

References

  1. Hartmann, J.M., Levi Di Leon, R., and Taine, J., 'Line-by-line and narrow-band statistical model calculations for HO,' Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 32, No. 2, 1984, pp.119-127 https://doi.org/10.1016/0022-4073(84)90076-1
  2. Rothman, L.S., Gamache, R.R., Tipping, R.H., Rinsland, C.P., Smith, M.A.H., Benner, D. C, Devi, V.M., Flaud, J.-M., Camy-Peyret, C, Perrin, A., Goldman, A., Massie, S.T., Brown, L.R. and Toth. R.A., 'The HITRAN molecular database: editions of 1991 and 1992,' Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 48, 1992, pp.469-507 https://doi.org/10.1016/0022-4073(92)90115-K
  3. Edwards D.K., 'Molecular gas band radiation,' Advances in heat transfer, New York: Academic Press, Vol. 12, 1976, 115-193 https://doi.org/10.1016/S0065-2717(08)70163-1
  4. Modak, A.T., 'Exponential wide band parameters for the pure rotational band of water vapor,' Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 21, 1979, pp. 131-142 https://doi.org/10.1016/0022-4073(79)90024-4
  5. Malkmus., W., 'Random Lorentz Band Model with Exponential-tailed S-l Line Intensity Distribution' Journal of Optical Society of America, Vol. 57, 1967, pp.323-329 https://doi.org/10.1364/JOSA.57.000323
  6. Ludwig, C.B., Malkmus, W., Readon, J. E., and Thompson, A. L., Handbook of Infrared Radiation from Combustion Gases, NASA SP-3080, Scientific and Technical Information Office, Washington D. C, 1973
  7. Goody, R.M., Atmospheric Radiation, Clarendon press, Oxford, 1964, pp.122-170
  8. Godson, W.L., 'The evaluation of infrared radiation fluxes due to atmospheric water vapor,' Quarterly Journal of Royal Meteorological Society, 1953, Vol. 79, pp.367-379 https://doi.org/10.1002/qj.49707934104
  9. Zhang, L., Soufiani, A. and Taine, J., 1988, 'Spectral Correlated and Noncorrelated Radiative Transfer in a Finite Axisymmetric System Containing an Absorbing and Emitting Real Gas-Particle Mixture,' International Journal of Heat and Mass Transfer, Vol. 31, pp. 2261-2272 https://doi.org/10.1016/0017-9310(88)90158-5
  10. Kim, T.K., Menart, J.A. and Lee, H., 1991, 'Nongray Radiative Gas Analyses Using the S-N Technique,' ASME Journal of Heat Transfer, Vol. 113, pp.946-952 https://doi.org/10.1115/1.2911226
  11. Hotel, H.C., Sarofim A.F., 1967, Radiative Transfer, McGraw-Hill, New York
  12. Kim, O.J. and Song, T.H., 'Implementation of the Weighted Sum of Gray Gases Model to a Narrow Band: Application and Validity,' Numerical Heat Transfer Part B: Fundamental, Vol. 30, 1996, pp.453-468 https://doi.org/10.1080/10407799608915093
  13. Kim, O.J., Song T.H, 2000, 'Data Base of WSGGM-based Spectral Method for Radiation of Combustion Products,' Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 64, pp.379-394 https://doi.org/10.1016/S0022-4073(99)00125-9
  14. Goody, R., West, R., Chen, L. and Crisp, D., Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 42, 1989, pp.539-550 https://doi.org/10.1016/0022-4073(89)90044-7
  15. Smith, T.F., Shen, Z.F., Friedman, Z.N., 1982, 'Evaluation of Coefficients for the Weighted Sum of Gray Gases Model,' ASME Journal of Heat Transfer, Vol. 104, pp.602-608 https://doi.org/10.1115/1.3245174
  16. Modest, M.F., 1993, 'The Weighted-Sum-of-Gray-Gases Model for Arbitrary Solution Methods in Radiative Transfer,' ASME Journal of Heat Transfer, Vol. 113, pp.650-656 https://doi.org/10.1115/1.2910614
  17. Soufiani A. and Taine J., 1997, 'High Temperature Gas Radiative Property Parameters of Statistical Narrow-Band Model for $H_2O$, $CO_2$ and CO and Correlated-k Model for $H_2O$ and $H_2O$,' International Journal of Heat and Mass Transfer, Vol. 40, No.4, pp. 987-991 https://doi.org/10.1016/0017-9310(96)00129-9
  18. Arora, J. S., 1989, Introduction to Optimum Design, McGraw-Hill, NewYork
  19. Modest, M.F., 1993, Radiative Heat Transfer, McGraw-Hill
  20. Selcuk, M, 1985, 'Exact soultions for Radiative Heat Transfer in Box-shaped Furnaces,' ASME Journal of Heat Transfer, Vol. 33, No. 6, pp. 533-549
  21. Press, W.H, Teukolsky, S.A, Vettreringling, W.T., Flannery, B.P., 1992, Numerical Recipes in Fortran 77: The Art of Scientific Computing 2nd. Edition, America Institute of Physics, p. 397