Mass-Production of Acetylcholinesterase Sensitive to Organophosphosphates and Carbamates Insecticides

유기인계 및 카바메이트계 농약의 고감수성 아세틸콜린에스테라이즈의 대량생산

  • Kim, Young-Mee (Medical School, Cheju National University) ;
  • K., Cho (Jeju Hi-Tech Industry Development Institute) ;
  • Cho, Moon-Jae (Medical School, Cheju National University)
  • Published : 2003.11.30

Abstract

For the simple rapid bioassay of organophosphorus and carbamate pesticide residues, a mass-production system of acetycholinesterase (AChE, EC 3.1.1.7, MAChE) using baculovirus and insect cell culture was constructed. The cDNA for AChE was synthesized from Drosophila melanogaster in Halla Mountain, the lipid anchor tail was removed by PCR and was used for the site-directed mutagenesis of three amino acid residues (E107Y, F368L, L408F). The mutated cDNA was inserted into the baculovirus vector and expressed in insect cells. Maximum cell growth and enzyme activity were reached when the cells $(2{\times}10^6\;cell/ml)$ were infected four times at four-day-intervals. His-tag containing MAChE was purified using Ni-NTA column and used for characterization. The activity was maintained under various pHs (3-10) and temperatures $(20-50^{\circ}C)$ under experimental conditions. As an extraction solution for pesticides, methanol is more effective than ethanol. Against major organophosphate and carbamate pesticides, the MAChE showed better sensitivity than AChE and AChE from housefly (Taiwan).

본 실험에서는 acetylcholinesterase(AChE, EC 3.1.1.7)를 이용한 간이 잔류농약 검사법에 필요한, 유기인계 및 카바메이트계 살충제에 대한 감수성이 증가된 AChE(MAChE)를 baculovirus를 이용하여 대량으로 생산하는 시스템을 구축하고 생산된 효소의 특성을 관찰하였다. 한라산에서 채취한 초파리에서 AChE의 cDNA를 합성한 후 PCR을 이용하여 AChE의 lipid anchor부분을 제거하고 site directed mutagenesis에 의해 E107Y, F368L, L408E의 염기서열을 변화시켜 재조합된 MAChE cDNA를 합성하였고 baculovirus vector에 삽입하여 대량생산을 시도하였다. 대량 증식에 필요한 조건으로 감염횟수가 네 번일 때, 그리고 세포수가 $2{\times}10^6$ cell/ml일 때 세포의 증식과 효소의 활성이 극대화됨을 알 수 있었다. His tag을 붙여 Ni-NTA affinity column을 이용하여 MAChE를 정제하였으며, 정제된 효소는 실험조건하에서는 pH(3-10)와 온도$(20-50^{\circ}C)$의 변화에 영향을 받지 않았다. 농약 추출액으로 methanol을 사용했을 때가 ethanol을 사용할 때 보다 효과적임을 알 수 있었다. 대표적인 유기인계와 카바메이트계 농약에 대한 저해율을 조사한 결과 재조합된 MAChE는 대만의 집파리 및 변형되지 않은 AChE에 비하여 전반적으로 농약에 대한 감수성이 높은 것으로 나타났다.

Keywords

References

  1. Breitbach, K. and Donald, L. J. (2001) Improved glycosylation of a foreign protein by Tn-5B1-4 cells engineered to express mammalian glycosyltransferases. Biotechnol. Bioeng. 74, 230-239 https://doi.org/10.1002/bit.1112
  2. Chaabihi, H., Fournier, D., Fedon, Y, Bossy, JP., Ravallec, M., Devauchelle, G. and Cerutti, M. (1994) Biochemical Characterization of Drosophila melanogaster Acetylcholinesterase Expressed by Recombinant Baculoviruses. Biochem. Bioph. Res. Co. 203, 734-742 https://doi.org/10.1006/bbrc.1994.2243
  3. Ellman, G. L., Courtney. K. D., Andres, V. Jr. and Featherstone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88-95 https://doi.org/10.1016/0006-2952(61)90145-9
  4. Eto, M. (1974) Organophosphorus pesticides organic and biological Chemistry. CRC Press. pp. 1-368
  5. Estrada-Mondaca, S. and Fournier, D. (1998) Stabilization of Recombinant Drosophila Acetylcholinesterase. Protein Expr. Purif. 12, 166-172 https://doi.org/10.1006/prep.1997.0831
  6. Fei, Li. and Zhaojun, H. (2002) Purification and characterization of acetylcholinesterase from cotton aphid (Aphis gossypii Glover). Arch. Insect Biochem. Physiol. 51, 37-45 https://doi.org/10.1002/arch.10048
  7. Fremaux, I., Mazeres, S., Brisson-Lougarre, A., Arnaud, M., Ladurantie, C. and Fournier, D. (2002) Improvement of Drosophila acetylcholinesterase stability by elimination of a free cysteine. BMC Biochem. 30, 21-210
  8. Kim, G. E. The Introducton of Rapid Bioassay for Pesticide Residues (R.B.P.R) to Enhance Marketing System of Safe Farm Products
  9. Kim, J. H. and Kim, Y. H. (1998) Inhibition of Acetylcholinesterase Activity on the Organophosphorus and Carbamate Pesticides. J. Kor. Env. 7, 52-56
  10. Kim, Y. C, Won, K. P. and Lee, S. R. (1999) Studies on the Improvement of Detailed Inspection of Imported Foods, Pub. No. A0063-65433-57-9911, Kor. Health Ind. Develop. Ins. 234-302
  11. Kuhr, R. J. and Dorough, H. W. (1977) Carbamate insecticideschemistry. biochem. Toxol. CRC Press. pp. 41-142
  12. Saarinen, M. A., Troutner, K. A., Gladden, S. G., Mitchell Logean, C. M. and Murhammer, D. W. (1999) Recombinant Protein Synthesis in Trichoplusia ni BTITn-5B1-4 Insect Cell Aggregates. Biotechnol. Bioeng. 63, 612-617 https://doi.org/10.1002/(SICI)1097-0290(19990605)63:5<612::AID-BIT11>3.0.CO;2-C
  13. Sandino, E. M., Andree, L. and Fournier, D. (1998) Drosophila Acetylcholinesterase: Effect of post-traductional modifications on the production in the baculovirus system and substrate metabolization. Arch. Insect Biochem. Phy. 38, 84-90 https://doi.org/10.1002/(SICI)1520-6327(1998)38:2<84::AID-ARCH4>3.0.CO;2-V
  14. Ralston, J. S., Main, A. R., Kilpatrick, B. F. and Chasson, A. L. (1983) Use of procainamide gels in the purification of human and horse serum cholinesterases. Biochem. J. 211, 243-250
  15. Lee, S. R. and Lee M. G. (2001) Present Status and Remedial Actions with Regard to Legal Limits of Pesticide Residues in Korea. Kor. J. Envorn. Agri. 20, 34-43
  16. Yvan, B., Pascale, S. A., Andree, L., Muriel, A., Francois, V., Sandino, E. M. and Fournier, D. (2002) Acetylcholinesterase engineering for detection of insecticide residues. Protein Eng. 15, 43-50 https://doi.org/10.1093/protein/15.1.43
  17. Zhao, Y., Chapman, D. A. and Jones, I. M. (2003) Improving baculovirus recombination. Nucleic Acids Res. 31, E6-6 https://doi.org/10.1093/nar/gng006
  18. Villatte, F., Marcel, V., Estrada-Mondaca, S. and Fournier, D. (1998) Engineering sensitive acetylcholinesterase for detection of organophosphate and carbamate insecticides. Biosens Bioelectron. 13, 157-64 https://doi.org/10.1016/S0956-5663(97)00108-5