DOI QR코드

DOI QR Code

Ab Initio Quantum Mechanical Studies of 1,2-, 1,3-Dioxetanes and 1,3-Cyclodisiloxane; Energetics, Molecular Structures, Vibrational Frequencies

1,2-, 1,3-dioxetanes, 그리고 1,3-cyclodisiloxane의 분자구조, 에너지와 진동주파수에 대한 순 이론 양자 역학적 연구

  • 최근식 (한남대학교 이과대학 화학과) ;
  • 김승준 (한남대학교 이과대학 화학과)
  • Published : 2003.08.20

Abstract

The geometrical parameters, vibrational frequencies, and relative energies for 1,2-, 1,3-dioxetanes, and 1,3-cyclodisiloxane have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The geometries have been optimized at the self-consistent field(SCF), the single and double excitation configuration interaction(CISD), the coupled cluster with single and double excitation(CCSD), and the CCSD with connected triple excitations[CCSD(T)] levels of theory. The highest level of theory employed in this study is TZ2P CCSD(T). Harmonic vibrational frequencies and IR intensities are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. Also zero-point vibrational energies have been considered to predict the dimerization energies for 1,2- and 1,3-isomers.

1,2-와 1,3-dioxetane$(C_2O_2H_4)$, 그리고 1,3-cyclodisiloxane$(Si_2O_2H_4)$에 대하여 높은 이론 수준에서 분자구조, 진동주파수, 그리고 에너지 등을 계산하였다. 위의 모든 분자들에 대하여 TZ2P CCSD(T)의 이론 수준까지 분자구조를 최적화 하였으며. 진동주파수는 여러 basis set에서 SCF 방법으로 계산하였다. 본 연구에서 최적화된 분자구조들에 대한 진동주파수가 모두 실수(real number)로 예측됨으로서, 제안된 모든 분자구조가 local minimum 구조임을 확인하였다. 1,2- 및 1,3-dioxetane들과 cyclodisiloxane이 두 분자의 aldehyde와 silanone으로 해리 될 때의 중합에너지를 zero-point vibrational energy(ZPVE)를 고려하여 계산하고, 안정성을 비교하였다.

Keywords

References

  1. Lay, T. H.; Yamada, T.; Tsai, P-L.; Bozzelli, J. W.; J. Phys. Chem. A., 1997, 101, 2471. https://doi.org/10.1021/jp9629497
  2. Adam, W.; Baader, W. J.; J. Am. Chem. Soc., 1985, 107, 410. https://doi.org/10.1021/ja00522a001
  3. Dewar, M. J. S.; Thiel, W.; J. Am. Chem. Soc., 1975, 97, 3978. https://doi.org/10.1002/qua.560190511
  4. Harding, L. B.; Goddard III, W. A.; J. Am. Chem. Soc., 1980, 102, 439. https://doi.org/10.1016/0009-2614(81)85260-8
  5. Hilal, R.; Int. J. Quantum Chem., 1981, 19, 805. https://doi.org/10.1002/jcc.540040406
  6. Yamaguchi, K.; Yabushita, S.; Fueno, T.; Chem. Phys. Lett., 1981, 78, 572. https://doi.org/10.1021/ja00354a014
  7. Hotokka, M.; Roos, B.; Siegbahn, P.; J. Am. Chem. Soc., 1983, 105, 5263. https://doi.org/10.1021/ja00847a018
  8. Chen, C.-C.; Fox, M. A.; J. Comput. Chem., 1983, 4, 488. https://doi.org/10.1021/ja00288a022
  9. Richardson, W. H.; J. Org. Chem., 1989, 54, 4677. https://doi.org/10.1021/jo00280a041
  10. Dorofeeva, O. V.; Thermochimica Acta, 1992, 194, 9. https://doi.org/10.1016/0040-6031(92)80002-E
  11. Lay, T. H.; Bozzelli, W.; Chemical Physics Letters., 1997, 268, 175. https://doi.org/10.1021/ja9935714
  12. Zharinova, E. V.; Voloshin, A. I.; Kazakov, V. P.; J. Mol. Liqiuids., 2001, 91, 237. https://doi.org/10.1126/science.284.5415.788
  13. Skancke, P. N.; Fogarasi, G.; Boggs, J. E.; J. Mol. Struct, 1980, 62, 259. https://doi.org/10.1021/ja00315a077
  14. Kudo, T.; Nagase, S.; J. Am. Chem. Soc., 1985, 107, 2589. https://doi.org/10.1016/S0009-2614(01)00568-1
  15. Kumar, P. N. V. P.; Wang, D.-X.; Lam, B.; Albright, T. A.; Jemmis, E.l D.; J. Mol. Struct., 1989, 194, 183. https://doi.org/10.1016/S0020-1693(99)00474-0
  16. Liang, C.; Allen, L. C.; J. Am Chem. Soc., 1991, 113, 1878. https://doi.org/10.1006/jmsp.1996.0048
  17. Huzinaga, S.; J. Chem. Phys., 1965, 42, 1293. https://doi.org/10.1063/1.1696113
  18. Dunning, T. H.; J. Chem. Phys., 1970, 53, 2823. https://doi.org/10.1021/jo00280a041
  19. Dunning, T. H.; J. Chem. Phys., 1971, 51, 716. https://doi.org/10.1016/0040-6031(92)80002-E
  20. Pulay, P.; In Modern Theoretical Chemistry, Schaefer, H. F.; Plenum, Ed.; New York, 1977, 4, 153.
  21. Goddard, J. D.; Handy, N. C.; Schaefer, H. F.; J. Chem. Phys., 1979, 71, 1525. https://doi.org/10.1063/1.1674408
  22. Yamaguchi, Y.; Osamura, Y.; Goddard, J. D.; Schaefer III, H. F.; A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory, (Oxfod University Press, New York, 1994). https://doi.org/10.1063/1.1696113
  23. Brooks, B. R.; Laidig, W. D.; Saxe, P.; Goddard, J. D.; Yamaguchi, Y.; Schaefer, H. F.; J. Chem. Phys., 1980, 72, 4652. https://doi.org/10.1021/ja00006a002
  24. Scheiner, A. C.; Scuseria, G. E.; Rice, J. E.; Lee, T. J.: Schaefer, H. F. J. Chem. Phys. 1987, 87, 5361. https://doi.org/10.1016/0022-2860(89)80080-8
  25. Scuseria, G. E.; Chem. Phys. Lett., 1991, 176, 27. https://doi.org/10.1021/ja00295a003
  26. Saxe, P.; Yamaguchi, Y.; Schaefer, H. F.; J. Chem. Phys. 1987, 77, 5647. https://doi.org/10.1016/0022-2860(80)85242-2
  27. PSI 2.0.8: Janssen, C. L.; Seidl, E. T.; Scuseria, G. E.; Hamilton, T. P.; Yamaguchi, Y.; Remingtion, R. B.; Xie, Y.; Vacek, G.; Sherrill, C. D.; Crawford, T. D.; Rermann, J. T.; Allen, W. D.; Brocks, B. R.; Fitzgerald, G. B.; Fox, D. J.; Gaw, J. F.; Handy, N. C.; Laidig, W. D.; Lee, T. J.; Pitzer, R. M.; Rice, J. E.; Saxe, P.; Scheiner, A. C.; Schaefer, H. F.; PSITECH Inc. Watkinssvills, GA.U.S.A. 1994. https://doi.org/10.1016/S0167-7322(01)00168-4
  28. Streitwieser, A.;Heathcock, C. H.; Kosower, E. M.; Introduction to Organic Chemistry; Macmillan Pub., New York, U. S. A., 1992. https://doi.org/10.1016/S0009-2614(97)00168-1
  29. Bogey, M.; Delcroix, B.; Walters, A.; Guillemin, J.-C.; J. Molecular Spectroscopy, 1996, 175, 421-428. https://doi.org/10.1006/jmsp.1996.0048
  30. Demartin, F.; Biagioli, M.; Strinna-Erre, L.; Panzanelli, Angelo.; Micera, G.; Inorganica Chimica Acta., 2000, 299, 123-127. https://doi.org/10.1063/1.453655
  31. Sanz, M. E.; Sanz, V. M.; Lopez, J. C.; Alonso, J. L.; Chem. Phys. Lett., 2001, 342, 31-38. https://doi.org/10.1063/1.439707
  32. Fink, M. J.; Haller, K. J.; West, R.; Michl, J.; J. Am Chem. Soc., 1984, 106, 822. https://doi.org/10.1016/0009-2614(91)90005-T
  33. Serra, S.; Cavazzoni, C.; Chiarotti, G. L.; Scandolo, S.; Tosatti, E.; Science, 1999, 284, 788. https://doi.org/10.1063/1.438494
  34. Frapper, G.; Saillard, J.-Y.; J. Am Chem. Soc., 2000, 122, 5367. https://doi.org/10.1021/ja9935714

Cited by

  1. Interplay of thermochemistry and Structural Chemistry, the journal (Volume 25, 2014, Issues 3–4) and the discipline vol.26, pp.3, 2015, https://doi.org/10.1007/s11224-015-0584-x