• Title/Summary/Keyword: Chiral recognition

Search Result 66, Processing Time 0.023 seconds

Synthesis of Chiral Azophenolic Pyridino-18-Crown-6 Ether and Its Enantiomeric Recognition toward Chiral Primary Amines

  • Kim, Jae-kon;Song, Su-Hee;Kim, Jae-Hong;Kim, Tae-Hyun;Kim, Ha-suck;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1577-1580
    • /
    • 2006
  • The article reports the synthesis and enantiomeric recognition of a new chiral azophenolic pyridino-18-crown-6 ether, (S,S)-6, possessing diphenyl groups as chiral barriers. The association constants for the enantiomeric recognition of chiral primary amines (7-12) using chiral azophenolic pyridino-18-crown-6 ether, (S,S)-6, were determined by UV-visible titration method in acetonitrile at $25{^{\circ}C}$.

Performance of HPLC Chiral Stationary Phases with Two Chiral Units and the Effect of the Stereochemistry of the Second Chiral Unit on the Chiral Recognition

  • 현명호;황승렬;한상철
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1309-1312
    • /
    • 1999
  • Two chiral stationary phases (CSPs) derived from two diastereomers consisting of (R)- or(S)-α-naphthylethylamine and (S)-naproxen were found to show different chromatographic behaviors in resolving N-(3,5-dinitrobenzoyl)-α-arylalkylamines and N-(3,5-dinitrobenzoyl)-α- or β-amino amides and esters. From the different chromatographic resolution behaviors on the two CSPs, the chiral recognition is proposed to be controlled mainly by the (R)- or (S)-α-naphthylethylamine part of the CSP. In contrast, the (S)-naproxen part of the two CSPs is proposed to exert some subordinate effects on the chiral recognition.

Chiral Recognition Models of Enantiomeric Separation on Cyclodextrin Chiral Staionary Phases

  • 이선행;김병학;이영철
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.305-309
    • /
    • 1995
  • The enantiomeric separation of several amino acid derivatives by reversed-phase liquid chromatography using two (R)-and (S)-naphthylethylcarbamate-β-cyclodextrin(NEC-β-CD) bonded stationary phases was studied to illustrate the chiral recognition model of the enantiomeric separation. The retention and enantioselectivity of the chiral separations with (R)-and (S)-NEC-β-CD bonded phases were compared with similar separations with the native β-CD stationary phases. Especially, the enantioselectivity and elution orders between the derivatized amino acid enantiomers are carefully examined. These results can be illustrated by the chiral recognition models involving inclusion complexation, π-π interaction, and/or hydrophobic interaction. Inclusion complexation and hydrophobic interaction of the naphthyl group of the NEC moiety seem to be major chiral recognition components in the enantiomeric separation of 2,4-dinitrophenyl amino acids and dabsyl amino acids on (R)-and (S)-NEC-β-CD columns. For dansyl amino acids, only the inclusion complexation is the dominant factor. Three different chiral recognition models containing π-π interaction, inclusion complexation and hydrogen bonding were proposed for the separation of the 3,5-dinitrobenzoyl amino acid enantiomers, depending on the size and shape of amino acids.

Enantiomeric Resolution of α-Amino Acid Derivatives on Two Diastereomeric Chiral Stationary Phases Based on Chiral Crown Ethers Incorporating Two Different Chiral Units

  • Kim, Hee-Jin;Choi, Hee-Jung;Cho, Yoon-Jae;Hyun, Myung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1551-1554
    • /
    • 2010
  • Two diastereomeric chiral stationary phases (CSPs) were applied to the liquid chromatographic resolution of various racemic ${\alpha}$-amino methyl esters, ${\alpha}$-amino N,N-diethylamides and ${\alpha}$-amino N-propylamides. The CSP incorporating (R)-3,3'-diphenyl-1,1'-binaphtyl and (R,R)-tartaric acid unit as chiral barriers did not show any chiral recognition. In contrast, the CSP incorporating (R)-3,3'-diphenyl-1,1'-binaphtyl and (S,S)-tartaric acid unit as chiral barriers was found to show excellent chiral recognition especially for the two enantiomers of ${\alpha}$-amino N-propylamides. Some of ${\alpha}$-amino methyl esters and ${\alpha}$-amino N,N-diethylamides were also resolved on the CSP incorporating (R)-3,3'-diphenyl-1,1'-binaphtyl and (S,S)-tartaric acid unit. From these results it was concluded that the two chiral units composing the diastereomeric CSPs can show "matched" or "mismatched" effect on the chiral recognition according to their absolute stereochemistry.

Liquid Chromatographic Reaolution of N-Protected α -Amino Acids as Their Anilide and 3,5-Dimethylanilide Derivatives on Chiral Syationary Phases Derived fron (S)-Leucine

  • Hyun, Myung-Ho;Cho, Yoon-Jae;Baik, In-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1291-1294
    • /
    • 2002
  • Various racemic N-protected ${\alpha}-amino$ acids such as N-t-BOC-(tert-butoxycarbonyl), N-CBZ-(benzyloxycarbonyl) and N-FMOC-(9-fluorenylmethyloxycarbonyl) ${\alpha}-amino$ acids were resolved as their anilide and 3,5-dimethylanilde derivatives on an HPLC chira l stationary phase (CSP) developed by modifying a commercial (S)-leucine CSP. The chromatographic resolution results were compared to those on the commercial (S)-leucine CSP. The resolutions were greater on the modified CSP than those on the commercial CSP with only one exception, the resolution of N-t-BOC-phenylglycine anilide. In addition, the chromatographic resolution behaviors were quite consistent except for the resolution of N-protected phenylglycine derivatives, the (S)-enantiomers being retained longer. Based on the chromatographic resolution behaviors and with the aid of CPK molecular model studies, we proposed a chiral recognition mechanism for the resolution of N-protected ${\alpha}-amino$ acid derivatives. However, for the resolution of N-protected phenylglycine derivatives, a second chiral recognition mechanism, which competes in the opposite sense with the first chiral recognition mechanism, was proposed. The two competing chiral recognition mechanisms were successfully used in the rationalization of the chromatographic behaviors for the resolution of N-protected phenylglycine derivatives.

Chiral Recognition Models for the Liquid Chromatographic Resolution of Enantiomers on (S)-Naproxen-Derived Chiral Stationary Phase Bearing Both $\pi$-Acidic and -Basic Sites

  • 현명호;진종성;나명선;정경규
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.344-348
    • /
    • 1995
  • As an effort to elucidate the chiral recognition mechanisms exerted by the (S)-naproxen-derived CSP bearing both π-acidic and π-basic sites, a homologues series of π-basic N-acyl-α-(1-naphthyl)alkylamines and π-acidic N-(3,5-dinitrobenzoyl)-α-amino esters were prepared and resolved. Based on the chromatographic resolution trends of the homologues series of analytes on the (S)-naproxen-derived chiral stationary phase, we proposed chiral recognition mechanisms which demonstrate that the intercalation of the substituent in the analyte molecule between the strands of bonded phase does significantly influence the enantioselectivity for resolving N-acyl-α-(1-naphthyl)alkylamines but the intercalation process is not involved in resolving N-(3,5-dinitrobenzoyl)-α-amino esters.