DOI QR코드

DOI QR Code

Theoretical Study of the Isotope Effect for the Reaction Cl+HD at the High Energy Using Pairwise Energy Model

Pairwise Energy Model을 이용한 높은 충돌에너지에서 Cl+HD 반응의 동위원소 효과에 대한 이론적 연구

  • Ju-Beom Song (Department of Chemical Education, Kyungpook National University)
  • 송주범 (경북대학교 사범대학 화학교육과)
  • Published : 2003.06.20

Abstract

The pairwise energy model (PEM) assumes that the cross section for the reaction cross section for the reaction A+BC$\{leftrightarrow}$B+C, where B and C are isotopes of hydrogen, depends on only the pairwise relative energy Es between A and B. Until now, the PEM has been used to interpret theoretically the isotope effect for the reactions such as $O(^3P)+HD,\;Ar^++(H_2,\;D_2,and\;HD)$. In this paper we carry out extensive quasiclassical trajectory calculations for the three possible reactions $Cl+H_2$ and HD and show that the PEM works very well at high energy. In particular we are able to accurately predict the intramolecular isotope effect at high energy for the reaction of Cl+HD using only the cross section data for $Cl+H_2$. To understand that the PEM works so well at high energy, the internal energy distributions for the products are examined. The distributions for three reactions are different at a fixed relative collision energy E but are approximately same at a fixed pairwise energy Es. This suggests that the PEM works very well at high energy. We believe the conclusions reached here will apply to other A+BC systems.

Pairwise Energy Model(PEM)은 A+BC$\{leftrightarrow}$AB+C(여기서 B와 C는 수소의 동위원소)반응의 반응 cross section은 A와 B사이의 pairwise energy Es에만 의존 한다고 가정한다. PEM은 지금까지 $O(^3P)+HD,\;Ar^++(H_2,\;D_2,및\;HD)$등 여러 반응에 대한 동위원소 효과를 이론적으로 설명하는데 이용되어 왔다. 본 논문에서는 quasiclassical trajectory 방법을 이용하여 $Cl+H_2$와 Cl+HD 반응을 계산하였고 높은 충돌에너지에서 이들 반응들의 결과를 PEM을 이용하여 잘 설명할 수 있었다. PEM을 이용하여 $Cl+H_2$ 반응의 cross section 값으로부터 높은 충돌에너지에서 Cl+HD 반응의 동위원소 효과를 정확히 예측할 수 있었다. 이러한 이유를 설명하기 위하여 생성물의 내부에너지 분포도 $P(E_{int})$를 조사 했다. 생성물의 내부에너지 분포도 $P(E_{int})$는 고정된 충돌에너지 E에서 동위원소 조합에 따라 다르지만 고정된 Es 값에서는 동위원소 조합에 대해서도 근사적으로 같다. 이것이 바로 PEM으로 이들 반응을 잘 설명해 줄 수 있는 이유이다. 여기서 도출된 결론은 높은 충돌에너지에서 여러 A+BC 반응에 또한 적용될 수 있을 것이다.

Keywords

References

  1. Song J. B.; Gislason E. A. J. Chem. Phys. 1993, 99,5117. https://doi.org/10.1063/1.466013
  2. Song J. B.; Gislason E. A.; Sizun M. J. Chem. Phys.1995, 102, 4885. https://doi.org/10.1063/1.469536
  3. Song J. B.; Gislason E. A. J. Chem. Phys. 1995, 103,8884. https://doi.org/10.1063/1.470077
  4. Song J. B.; Gislason E. A. J. Phys. Chem. 1996, 100,195. https://doi.org/10.1021/jp9520052
  5. Song J. B.; Gislason E. A. Chem. Phys. 1996, 202, 1. https://doi.org/10.1016/0301-0104(95)00285-5
  6. Song J. B.; Gislason E. A. J. Chem. Phys. 1996, 104,5834. https://doi.org/10.1063/1.471314
  7. Song J. B.; Gislason E. A. Chem. Phys. 1996, 212, 259. https://doi.org/10.1016/S0301-0104(96)00229-7
  8. Song J. B.; Gislason E. A. Chem. Phys. 1997, 214, 23. https://doi.org/10.1016/S0301-0104(96)00297-2
  9. Song J. B.; Gislason E. A. Chem. Phys. 1998, 237, 159. https://doi.org/10.1016/S0301-0104(98)00205-5
  10. Sizun M.; Gislason E. A.; Parlant G. Chem. Phys.1986, 107, 311. https://doi.org/10.1016/0301-0104(86)85010-8
  11. Sizun M.; Parlant G.; Gislason E. A. Chem. Phys. Lett.1987, 139, 1. https://doi.org/10.1016/0009-2614(87)80140-9
  12. Sizun M.; Parlant G.; Gislason E. A. Chem. Phys. 1989, 133, 251. https://doi.org/10.1016/0301-0104(89)80205-8
  13. Sizun M.; Gislason E. A. J. Chem. Phys. 1989, 91, 4603. https://doi.org/10.1063/1.456750
  14. Dong K.; Gislason E. A.; Sizun M. Chem. Phys. 1994,189, 143.
  15. Gislason E. A.; Sizun M. Chem. Phys. 1989, 133, 237. https://doi.org/10.1016/0301-0104(89)80204-6
  16. Gislason E. A.; Sizun M. Chem. Phys. Lett. 1989, 158,102. https://doi.org/10.1016/0009-2614(89)87301-4
  17. Gislason E. A.; Sizun M. J. Phys. Chem. 1991, 95,8462. https://doi.org/10.1021/j100175a013
  18. Light J. C.; Lin J. J. Chem. Phys. 1965, 43, 3209. https://doi.org/10.1063/1.1697295
  19. Light J. C. Discuss. Faraday Soc. 1967, 44, 14. https://doi.org/10.1039/df9674400014
  20. Light J. C.; Chan S. J. Chem. Phys. 1969, 51, 1008. https://doi.org/10.1063/1.1672098
  21. Suplinskas R. J. J. Chem. Phys. 1968, 49, 5046. https://doi.org/10.1063/1.1669997
  22. George T. F.; Suplinkas R. J. J. Chem. Phys. 1971, 54,1046. https://doi.org/10.1063/1.1674936
  23. Baer M.; Amiel S. J . Am. Chem. Soc. 1969, 91, 6547. https://doi.org/10.1021/ja01052a001
  24. Muckerman J. T. J. Chem. Phys. 1972, 57, 3388. https://doi.org/10.1063/1.1678770
  25. Muckerman J. T. In Theoretical Chemistry; Vol. 6A, ed.Henderson D.; Academic Press: New York, 1981; p. 1.
  26. Bookin D.; Constantine C. A.; Root J. W; MuckermanJ. T. Chem. Phys. Lett. 1983, 101, 23. https://doi.org/10.1016/0009-2614(83)80298-X
  27. Malcolme-Laws D. J. J. Chem. Soc. Faraday Trans. 1972, 268, 1613.
  28. Malcolme-Laws D. J. J. Chem. Soc. Faraday Trans. 1975, 71, 1183. https://doi.org/10.1039/f29757101183
  29. Malcolme-Laws, D. J. Chem. Phys. 1972, 57, 5522.
  30. Malcolme-Laws D. J. Radiochim. Acta. 1979, 26, 71.
  31. Kendall G. M. J. Chem. Phys. 1973, 58, 3523. https://doi.org/10.1063/1.1679686
  32. Gillen K. T.; Mahan G. H.; Winn J. S. J. Chem. Phys.1973, 59, 6380. https://doi.org/10.1063/1.1680017
  33. Yuan J. M.; Micha D. A. J. Chem. Phys. 1976, 64, 1032. https://doi.org/10.1063/1.432312
  34. Wright J. S.; Gray S. K.; Porter R. N. J. Phys. Chem.1979, 83, 1033. https://doi.org/10.1021/j100471a028
  35. Gonzalez M.; Aguilar A.; Gilibert M. Chem. Phys.1989, 131, 347. https://doi.org/10.1016/0301-0104(89)80181-8
  36. Gonzalez M.; Gilibert M.; Aguilar A.; Sayos R. J.Chem. Phys. 1993, 98, 2927. https://doi.org/10.1063/1.464120
  37. Fayeton J. A.; Brenot J; Durup-Ferguson C. M.; BaratM. Chem. Phys. 1989, 133, 259. https://doi.org/10.1016/0301-0104(89)80206-X
  38. Bhalla K. C.; Sathyamurthy N. Chem. Phys. Lett. 1989,160, 437. https://doi.org/10.1016/0009-2614(89)87623-7
  39. Armentrout P. B. Int. Rev. Phys. Chem. 1990, 9, 115. https://doi.org/10.1080/01442359009353244
  40. Armentrout P. B. In Isotope Effects in Gas-PhaseChemistry; ed. Kaye J. A.; ACS Symposium #502: Washington,1992; p. 194.
  41. Gentry W. R.; Gislason E. A.; Mahan B. H.; Tsao C.W. J. Chem. Phys. 1968, 49, 3058. https://doi.org/10.1063/1.1670549
  42. Henglein A.; Lacmann K.; Knoll B. J. Chem. Phys.1965, 43, 1048. https://doi.org/10.1063/1.1696817
  43. Gislason E. A.; Mahan B. H.; Tsao C. W.; Werner A.S. J. Chem. Phys. 1969, 50, 142. https://doi.org/10.1063/1.1670772
  44. Chiang M. M.; Mahan B. H.; Maltz C. J. Chem. Phys.1972, 57, 5114. https://doi.org/10.1063/1.1678197
  45. Gillen K. T.; Mahan B. H.; Winn J. S. Chem. Phys.Lett. 1973, 22, 344. https://doi.org/10.1016/0009-2614(73)80108-3
  46. Lin K. C.; CotterR. J.; Koski W. S. J. Chem. Phys.1974, 61, 905. https://doi.org/10.1063/1.1682033
  47. Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1989,84, 4862. https://doi.org/10.1063/1.449975
  48. Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1986, 85, 6380. https://doi.org/10.1063/1.451469
  49. Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1987, 86, 6420.
  50. Georgiadis R.; Armentrout P. B. J. Phys. Chem. 1988,92, 7060. https://doi.org/10.1021/j100336a008
  51. Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1989,90, 118. https://doi.org/10.1063/1.456516
  52. Stowe G. F.; Schultz R. H.; Wright C. A.; ArmentroutP. B. Int. J. Mass Spectrom. Ion Processes 1990, 100,177. https://doi.org/10.1016/0168-1176(90)85075-D
  53. Schultz R. H.; Armentrout P. B. J. Chem. Phys. 1993,99, 1159. https://doi.org/10.1063/1.465413
  54. Dressler R. A.; Salter R. H.; Murad E. J. Chem. Phys.1993, 99, 1159. https://doi.org/10.1063/1.465413
  55. Glenewinkel-Meyer T.; Hoppe U.; Kowalski A.;Ottinger C.; Rabenda D. Int. J. Mass Spectrom. IonProcesses 1995, 144, 167. https://doi.org/10.1016/0168-1176(95)04161-D
  56. Song J. B.; Gislason E. A. Chem. Phys. Lett. 1996, 259, 91. https://doi.org/10.1016/0009-2614(96)00732-4
  57. Song J. B. Chem. Phys. 2002, 285, 255. https://doi.org/10.1016/S0301-0104(02)00834-0
  58. Hase W. L.; Duchovic R. J.; Hu H.; Lim K. F.; Lu D.H.; Swany K. N.; VandelLinde S. R.; Wolf R. J.VENUS, obtained directly from Professor Hase.
  59. Hu H.; Hase W. L.; Pirraglia T. J. Comput. Chem.1991, 12, 1014. https://doi.org/10.1002/jcc.540120814
  60. Persky A. J. Chem. Phys. 1977, 66, 2832.
  61. Kosmas A.; Gislason E. A.; Jorgensen A. D. J. Chem.Phys. 1981, 75, 2884. https://doi.org/10.1063/1.442362
  62. Hillenbrand E. A.; Main D. .J.; Jorgensen A. D.; GislasonE. A. J. Phys. Chem. 1984, 88, 1358. https://doi.org/10.1021/j150651a024
  63. Budenhozer F. E.; Hu S. C.; Jeng D. C.; Gislason E. A.J. Chem. Phys. 1988, 89, 1958. https://doi.org/10.1063/1.455094
  64. Riederer D. E.; Jorgensen A. D.; Gislason E. A. J.Chem. Phys. 1991, 94, 5980. https://doi.org/10.1063/1.460733
  65. Hershbach D. R. Appl. Opt. Suppl. 1965, 2, 128.
  66. Connally C. M.; Gislason E. A. Chem. Phys. Letters1972, 14, 103. https://doi.org/10.1016/0009-2614(72)87154-9
  67. Truhlar D. G.; Dixon D. A. In Atom-molecule collisiontheory; ed. Bernstein R. B.; Plenum: New York, 1979;p. 595.