References
- Dubey, S. N.; Vaid, B. K. Synth. React. Inorg. Met.-Org. Chem., 1991, 21, 1299. https://doi.org/10.1080/15533179108020452
- Battacharya, P. K. J. Indian. Chem. Soc. 1982, 52, 505.
- E1-Hendawy, A. M.; El-Kourashy, E. G.; Shanab, M.M. Polyhedron 1992, 11, 523. https://doi.org/10.1016/S0277-5387(00)83299-4
- Mathews, I. I.; Joy, P. A.; Vasudevan, S.; Manohar, H.Inorg. Chem. 1991, 30, 2181. https://doi.org/10.1021/ic00009a042
- Pyrz, J. W.; Roe, A. I.; Stem, L. J.; QUE, Jr. L. J. Am.Chem. Soc. 1985, 107, 614. https://doi.org/10.1021/ja00289a013
- Martell, A. E.; Szpoganicz, B. Inorg. Chem. 1989, 28,4199. https://doi.org/10.1021/ic00322a006
- Aminabhavi, T. M.; Birader, N. S.; Patil, S. B.; Roddabasanagoudar,V. L.; Rudzinski, W. E. Inorg. Chem.Acta 1985, 107, 231. https://doi.org/10.1016/S0020-1693(00)82293-8
- Weller, M. G.; Weser, U. J. Am. Chem. Soc. 1982, 104,3752. https://doi.org/10.1021/ja00377a049
- Olivard, J.; Metzler, D. E.; Snell, E. E. J. Biol. Chem.1952, 199, 279.
- Holm, R. H. in Inorganic Biochemistry, Eichhorn, G.L.(ed.), Elsevier, New York, 1973, p. 1137.
- Burrows, R. C.; Bailar, Jr. J. C. J. Inorg. Nucl. Chem.1967, 29, 709. https://doi.org/10.1016/0022-1902(67)80327-0
- Cassella, L.; Gulloti, M.; Pintar, A.; Messori, L.; Rockenbauer,A.; Gyor, M, Inorg. Chem. 1987, 26, 1031. https://doi.org/10.1021/ic00254a014
- Percy, G. C. J. Inorg. Nucl. Chem. 1975, 37, 2071. https://doi.org/10.1016/0022-1902(75)80832-3
- Cassella, L.; Gulloti, M. Inorg. Chem. 1986, 25, 1293. https://doi.org/10.1021/ic00229a001
- Theriot, L. J.; Carlisle, G. O.; Hu, H. L. J. Inorg. Nucl.Chem. 1969, 31, 2891. https://doi.org/10.1016/0022-1902(69)80206-X
- Nakao, Y.; Sakuraj, K.; Nakahara, A. Bull. Chem. Soc.Jpn. 1967, 40, 1536. https://doi.org/10.1246/bcsj.40.1536
- Cassella, L.; Pasini, A.; Ugo, R.; Visca, M. J. Chem. Soc. Dalton. Trans. 1980, 1655
- Cassella, L., Gullotti, M., Melani, E. J. Chem. Soc. Perkin Trans.I 1982, 18227.
- Cassella, L.; Gullotti, M.; Pacchioni, G. J. Am. Chem.Soc. 1982, 104, 2386. https://doi.org/10.1021/ja00373a010
- Shanthi, R.; Nagaraja, K. S.; Udupa, M. R. Inorg.Chim. Acta 1987, 133, 211. https://doi.org/10.1016/S0020-1693(00)87768-3
- Cassella, L.; Gullotti, M. J. Am. Chem. Soc. 1983, 105, 803 https://doi.org/10.1021/ja00342a026
- Cassella, L.; Gullotti, M. Inorg. Chem. 1983, 22, 2259. https://doi.org/10.1021/ic00158a008
- Sattari, O.; Alipour, E.; Shirani, S., Amighian, J. J.Inorg. Biochem. 1992, 45, 115. https://doi.org/10.1016/0162-0134(92)80005-G
- Sharma, P. K.; Dubey, S. N. Indian J. Chem. 1994,33A, 1113.
- Nolan, K. B.; Soudi, K. K. Inorg. Chem. Acta 1995,230, 209. https://doi.org/10.1016/0020-1693(94)04303-D
- Lagrange, P.h.; Schneider, M.; Zare, K.; Lagrange, J.Ployhedron 1994, 13, 861. https://doi.org/10.1016/S0277-5387(00)83001-6
- Cavaco, I.; Pessoa, J.C.; Luz, S.M.; Durate, M.T. Polyhedron1995, 14, 429. https://doi.org/10.1016/0277-5387(94)00247-C
- Klink, R.E.; Stothers, J.B. Cand. J. Chem. 1952, 40,1071 https://doi.org/10.1139/v62-165
- Ranganathan, H.; Ramaswamy, D.; Ramasami,T.; Santappa, M. Chem. Lett. 1979, 1201
- Ryabokobylko,Yu.S.; Kurkovskaya L. N., Shapelko, N. N. Russ.J. Struct. Chem. 1974, 15, 783.
- Silverstein, R. M.; Bassler, G. C. Spectrometric Identificationof Organic Compounds, Wiley, New York, 1967,Ch. 3.
- Nakamoto, K. Spectroscopy and Structure of MetalChelate Compounds, Nakamoto, K. and McCarthy P.J.(eds.),Wiley, New York, 1968, Ch. 4.
- Teyssie, P.; Charette, J. J. Spectrochim. Acta 1963, 19,1407 https://doi.org/10.1016/0371-1951(63)80003-X
- Kovacic, J.E. Spectrochim. Acta 1967, 23A, 183
- Ruddick, J.; Sams, R. J. J. Organomet. Chem. 1973, 60, 233. https://doi.org/10.1016/S0022-328X(00)80645-2
- Hodgson, J. B.; Percy, G. C. Spectrochim. Acta 1967,32A, 1291.
- Nakamoto, K. Infrared and Raman Spectra of Inorganicand Coordination compounds, 3rd ed., Wiley-Interscience,New York, 1978, p.327
- Okkaku, K.; Nakamoto, K. Inorg. Chem. 1970, 10, 798. https://doi.org/10.1021/ic50098a027
- Comyns, A. E.; Gatehouse, B. M.; Wait, E. J. Chem.Soc. 1985, 4655.
- Cassella, L.; Gullotti, M. J. Am. Chem. Soc. 1981, 103,6338. https://doi.org/10.1021/ja00411a013
- Wendlandt, W.W. J. Inorg. Nucl. Chem. 1963, 25, 833 https://doi.org/10.1016/0022-1902(63)80370-X
- Donia, A.M.; Abou E1-Enein, S.; Masoud, M. S. Thermochim.Acta 1990, 161, 217. https://doi.org/10.1016/0040-6031(90)80303-G
- Donia, A.M.; Ayad, M.I.; Issa, R.M. Transition Met.Chem. 1991, 16, 518. https://doi.org/10.1007/BF01024321
- Donia, A.M.; Ayad, M.I. Monatsh. Chem. 1993, 124, 981. https://doi.org/10.1007/BF00814143
- Ferranand, R.; House, Jr. J. E. J. Inorg. Nucl. Chem.1972, 34, 2219 https://doi.org/10.1016/0022-1902(72)80154-4
- Gaber, M.; Ayad, M. M.; Ayad, M. I. Thermochim. Acta 1991, 176, 21. https://doi.org/10.1016/0040-6031(91)80256-I
- Yamada, M.; Araki, K.; Shiraishi, S. Bull. Chem. Soc.Jpn. 1987, 60, 3149. https://doi.org/10.1246/bcsj.60.3149
- Gaber, M.; Mabrouk, H. A.; BaIssa, A. A.; Ayad, M.M. Monatsh. Chem. 1992, 123 https://doi.org/10.1007/BF00808271
- Karanj, K. K.; Singh M. K. Transition Met. Chem. 1987, 12, 385. https://doi.org/10.1007/BF01171642
Cited by
- Spectral, Magnetic, Thermal, and DNA Interaction of Ni(II) Complexes of Glutamic Acid Schiff Bases vol.43, pp.1, 2013, https://doi.org/10.1080/15533174.2012.684260
- DFT studies of structure and vibrational frequencies of isotopically substituted diamin uranyl nitrate using relativistic effective core potentials vol.71, pp.3, 2008, https://doi.org/10.1016/j.saa.2008.03.012
- Binuclear Copper(II), Nickel(II) and Cobalt(II) Complexes with N2O2 Chromophores of Glycylglycine Schiff-Bases of Acetylacetone, Benzoylacetone and Thenoyltrifluoroacetone vol.31, pp.1, 2006, https://doi.org/10.1007/s11243-005-6312-4
- Synthesis of some Schiff base metal complexes involving para substituted aromatic aldehydes and glycylglycine: Spectral, electrochemical, thermal and surface morphology studies vol.983, pp.1-3, 2010, https://doi.org/10.1016/j.molstruc.2010.08.040
- DNA interaction with octahedral and square planar Ni(II) complexes of aspartic-acid Schiff-bases vol.1006, pp.1-3, 2011, https://doi.org/10.1016/j.molstruc.2011.09.020
- Synthesis, characterization and biological activities of 2-((E)-(benzo[d][1,3]dioxol-6-ylimino)methyl)-6-ethoxyphenol and its metal complexes vol.125, 2014, https://doi.org/10.1016/j.saa.2014.01.065
- pH-metric and spectroscopic properties of new 4-hydroxysalicylidene-2-aminopyrimidine Schiff-base transition metal complexes vol.973, pp.1-3, 2010, https://doi.org/10.1016/j.molstruc.2010.03.037
- Synthesis and Characterization of New Transition Metal Complexes of Schiff-base Derived from 2-Aminopyrimidine and 2,4-Dihydroxybenzaldehyde and Its Applications in Corrosion Inhibition vol.54, pp.4, 2010, https://doi.org/10.5012/jkcs.2010.54.4.402
- New complexes of 2-hydroxy-1-naphthoic acid and X-ray crystal structure of [Pt(hna)(PPh3)2] vol.1036, 2013, https://doi.org/10.1016/j.molstruc.2012.09.018
- Preparation, characterization and pH-metric measurements of 4-hydroxysalicylidenechitosan Schiff-base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III) vol.346, pp.6, 2011, https://doi.org/10.1016/j.carres.2011.01.014
- Transition metal complexes of a new hexadentate macroacyclic N2O4-donor Schiff base: Inhibitory activity against bacteria and fungi vol.45, pp.7, 2010, https://doi.org/10.1016/j.ejmech.2010.03.025