DOI QR코드

DOI QR Code

Spectral and Thermal Properties of Some Uranyl Complexes of Some Schiff-Bases Derived from Glycylglycine

  • Sh. A. Sallam (Department of Chemistry, Faculty of Science, Suez Canal University) ;
  • M. I. Ayad (Department of Chemitry, Faculty of Science, Menoufia University)
  • Published : 2003.06.20

Abstract

Complexes of uranyl ion $UO^{+2}_2$with Schiff-bases obtained by condensing glycylglycine with salicylaldehyde; 2-hydroxy-1-naphthaldehyde, 2,3-dihydroxybenzaldehyde, and 2,4-dihydroxybenzaldehyde have been synthesized and characterized through elemental analysis, conductivity measurements, magnetic susceptibility determinations, u.v., i.r. and $^1H$ nmr spectra as well as d.t.a., t.g. and d.s.c. techniques. Structures and mechanisms of thermal decomposition are proposed.

우라닐 이온, $UO^+_2$와 Schiff-base 와의 착화합물이 글리실글라이신과 살리실알데히드, 2-히드록시-1-나프트알데히드, 2,3-디히드록시 벤즈알데히드 그리고 2,4-디히드록시 벤즈알데히드와의 축합에 의해 합성되었으며 이들 착화합물의 특성을 원소분석, 전도도 측정, 자기화율 측정, UV, IR, NMR 스펙트라와 DTA, TG, DSC 결과를 이용하여 조사하였다. 구조와 열분해 메카니즘이 제안되었다.

Keywords

References

  1. Dubey, S. N.; Vaid, B. K. Synth. React. Inorg. Met.-Org. Chem., 1991, 21, 1299. https://doi.org/10.1080/15533179108020452
  2. Battacharya, P. K. J. Indian. Chem. Soc. 1982, 52, 505.
  3. E1-Hendawy, A. M.; El-Kourashy, E. G.; Shanab, M.M. Polyhedron 1992, 11, 523. https://doi.org/10.1016/S0277-5387(00)83299-4
  4. Mathews, I. I.; Joy, P. A.; Vasudevan, S.; Manohar, H.Inorg. Chem. 1991, 30, 2181. https://doi.org/10.1021/ic00009a042
  5. Pyrz, J. W.; Roe, A. I.; Stem, L. J.; QUE, Jr. L. J. Am.Chem. Soc. 1985, 107, 614. https://doi.org/10.1021/ja00289a013
  6. Martell, A. E.; Szpoganicz, B. Inorg. Chem. 1989, 28,4199. https://doi.org/10.1021/ic00322a006
  7. Aminabhavi, T. M.; Birader, N. S.; Patil, S. B.; Roddabasanagoudar,V. L.; Rudzinski, W. E. Inorg. Chem.Acta 1985, 107, 231. https://doi.org/10.1016/S0020-1693(00)82293-8
  8. Weller, M. G.; Weser, U. J. Am. Chem. Soc. 1982, 104,3752. https://doi.org/10.1021/ja00377a049
  9. Olivard, J.; Metzler, D. E.; Snell, E. E. J. Biol. Chem.1952, 199, 279.
  10. Holm, R. H. in Inorganic Biochemistry, Eichhorn, G.L.(ed.), Elsevier, New York, 1973, p. 1137.
  11. Burrows, R. C.; Bailar, Jr. J. C. J. Inorg. Nucl. Chem.1967, 29, 709. https://doi.org/10.1016/0022-1902(67)80327-0
  12. Cassella, L.; Gulloti, M.; Pintar, A.; Messori, L.; Rockenbauer,A.; Gyor, M, Inorg. Chem. 1987, 26, 1031. https://doi.org/10.1021/ic00254a014
  13. Percy, G. C. J. Inorg. Nucl. Chem. 1975, 37, 2071. https://doi.org/10.1016/0022-1902(75)80832-3
  14. Cassella, L.; Gulloti, M. Inorg. Chem. 1986, 25, 1293. https://doi.org/10.1021/ic00229a001
  15. Theriot, L. J.; Carlisle, G. O.; Hu, H. L. J. Inorg. Nucl.Chem. 1969, 31, 2891. https://doi.org/10.1016/0022-1902(69)80206-X
  16. Nakao, Y.; Sakuraj, K.; Nakahara, A. Bull. Chem. Soc.Jpn. 1967, 40, 1536. https://doi.org/10.1246/bcsj.40.1536
  17. Cassella, L.; Pasini, A.; Ugo, R.; Visca, M. J. Chem. Soc. Dalton. Trans. 1980, 1655
  18. Cassella, L., Gullotti, M., Melani, E. J. Chem. Soc. Perkin Trans.I 1982, 18227.
  19. Cassella, L.; Gullotti, M.; Pacchioni, G. J. Am. Chem.Soc. 1982, 104, 2386. https://doi.org/10.1021/ja00373a010
  20. Shanthi, R.; Nagaraja, K. S.; Udupa, M. R. Inorg.Chim. Acta 1987, 133, 211. https://doi.org/10.1016/S0020-1693(00)87768-3
  21. Cassella, L.; Gullotti, M. J. Am. Chem. Soc. 1983, 105, 803 https://doi.org/10.1021/ja00342a026
  22. Cassella, L.; Gullotti, M. Inorg. Chem. 1983, 22, 2259. https://doi.org/10.1021/ic00158a008
  23. Sattari, O.; Alipour, E.; Shirani, S., Amighian, J. J.Inorg. Biochem. 1992, 45, 115. https://doi.org/10.1016/0162-0134(92)80005-G
  24. Sharma, P. K.; Dubey, S. N. Indian J. Chem. 1994,33A, 1113.
  25. Nolan, K. B.; Soudi, K. K. Inorg. Chem. Acta 1995,230, 209. https://doi.org/10.1016/0020-1693(94)04303-D
  26. Lagrange, P.h.; Schneider, M.; Zare, K.; Lagrange, J.Ployhedron 1994, 13, 861. https://doi.org/10.1016/S0277-5387(00)83001-6
  27. Cavaco, I.; Pessoa, J.C.; Luz, S.M.; Durate, M.T. Polyhedron1995, 14, 429. https://doi.org/10.1016/0277-5387(94)00247-C
  28. Klink, R.E.; Stothers, J.B. Cand. J. Chem. 1952, 40,1071 https://doi.org/10.1139/v62-165
  29. Ranganathan, H.; Ramaswamy, D.; Ramasami,T.; Santappa, M. Chem. Lett. 1979, 1201
  30. Ryabokobylko,Yu.S.; Kurkovskaya L. N., Shapelko, N. N. Russ.J. Struct. Chem. 1974, 15, 783.
  31. Silverstein, R. M.; Bassler, G. C. Spectrometric Identificationof Organic Compounds, Wiley, New York, 1967,Ch. 3.
  32. Nakamoto, K. Spectroscopy and Structure of MetalChelate Compounds, Nakamoto, K. and McCarthy P.J.(eds.),Wiley, New York, 1968, Ch. 4.
  33. Teyssie, P.; Charette, J. J. Spectrochim. Acta 1963, 19,1407 https://doi.org/10.1016/0371-1951(63)80003-X
  34. Kovacic, J.E. Spectrochim. Acta 1967, 23A, 183
  35. Ruddick, J.; Sams, R. J. J. Organomet. Chem. 1973, 60, 233. https://doi.org/10.1016/S0022-328X(00)80645-2
  36. Hodgson, J. B.; Percy, G. C. Spectrochim. Acta 1967,32A, 1291.
  37. Nakamoto, K. Infrared and Raman Spectra of Inorganicand Coordination compounds, 3rd ed., Wiley-Interscience,New York, 1978, p.327
  38. Okkaku, K.; Nakamoto, K. Inorg. Chem. 1970, 10, 798. https://doi.org/10.1021/ic50098a027
  39. Comyns, A. E.; Gatehouse, B. M.; Wait, E. J. Chem.Soc. 1985, 4655.
  40. Cassella, L.; Gullotti, M. J. Am. Chem. Soc. 1981, 103,6338. https://doi.org/10.1021/ja00411a013
  41. Wendlandt, W.W. J. Inorg. Nucl. Chem. 1963, 25, 833 https://doi.org/10.1016/0022-1902(63)80370-X
  42. Donia, A.M.; Abou E1-Enein, S.; Masoud, M. S. Thermochim.Acta 1990, 161, 217. https://doi.org/10.1016/0040-6031(90)80303-G
  43. Donia, A.M.; Ayad, M.I.; Issa, R.M. Transition Met.Chem. 1991, 16, 518. https://doi.org/10.1007/BF01024321
  44. Donia, A.M.; Ayad, M.I. Monatsh. Chem. 1993, 124, 981. https://doi.org/10.1007/BF00814143
  45. Ferranand, R.; House, Jr. J. E. J. Inorg. Nucl. Chem.1972, 34, 2219 https://doi.org/10.1016/0022-1902(72)80154-4
  46. Gaber, M.; Ayad, M. M.; Ayad, M. I. Thermochim. Acta 1991, 176, 21. https://doi.org/10.1016/0040-6031(91)80256-I
  47. Yamada, M.; Araki, K.; Shiraishi, S. Bull. Chem. Soc.Jpn. 1987, 60, 3149. https://doi.org/10.1246/bcsj.60.3149
  48. Gaber, M.; Mabrouk, H. A.; BaIssa, A. A.; Ayad, M.M. Monatsh. Chem. 1992, 123 https://doi.org/10.1007/BF00808271
  49. Karanj, K. K.; Singh M. K. Transition Met. Chem. 1987, 12, 385. https://doi.org/10.1007/BF01171642

Cited by

  1. Spectral, Magnetic, Thermal, and DNA Interaction of Ni(II) Complexes of Glutamic Acid Schiff Bases vol.43, pp.1, 2013, https://doi.org/10.1080/15533174.2012.684260
  2. DFT studies of structure and vibrational frequencies of isotopically substituted diamin uranyl nitrate using relativistic effective core potentials vol.71, pp.3, 2008, https://doi.org/10.1016/j.saa.2008.03.012
  3. Binuclear Copper(II), Nickel(II) and Cobalt(II) Complexes with N2O2 Chromophores of Glycylglycine Schiff-Bases of Acetylacetone, Benzoylacetone and Thenoyltrifluoroacetone vol.31, pp.1, 2006, https://doi.org/10.1007/s11243-005-6312-4
  4. Synthesis of some Schiff base metal complexes involving para substituted aromatic aldehydes and glycylglycine: Spectral, electrochemical, thermal and surface morphology studies vol.983, pp.1-3, 2010, https://doi.org/10.1016/j.molstruc.2010.08.040
  5. DNA interaction with octahedral and square planar Ni(II) complexes of aspartic-acid Schiff-bases vol.1006, pp.1-3, 2011, https://doi.org/10.1016/j.molstruc.2011.09.020
  6. Synthesis, characterization and biological activities of 2-((E)-(benzo[d][1,3]dioxol-6-ylimino)methyl)-6-ethoxyphenol and its metal complexes vol.125, 2014, https://doi.org/10.1016/j.saa.2014.01.065
  7. pH-metric and spectroscopic properties of new 4-hydroxysalicylidene-2-aminopyrimidine Schiff-base transition metal complexes vol.973, pp.1-3, 2010, https://doi.org/10.1016/j.molstruc.2010.03.037
  8. Synthesis and Characterization of New Transition Metal Complexes of Schiff-base Derived from 2-Aminopyrimidine and 2,4-Dihydroxybenzaldehyde and Its Applications in Corrosion Inhibition vol.54, pp.4, 2010, https://doi.org/10.5012/jkcs.2010.54.4.402
  9. New complexes of 2-hydroxy-1-naphthoic acid and X-ray crystal structure of [Pt(hna)(PPh3)2] vol.1036, 2013, https://doi.org/10.1016/j.molstruc.2012.09.018
  10. Preparation, characterization and pH-metric measurements of 4-hydroxysalicylidenechitosan Schiff-base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III) vol.346, pp.6, 2011, https://doi.org/10.1016/j.carres.2011.01.014
  11. Transition metal complexes of a new hexadentate macroacyclic N2O4-donor Schiff base: Inhibitory activity against bacteria and fungi vol.45, pp.7, 2010, https://doi.org/10.1016/j.ejmech.2010.03.025