DOI QR코드

DOI QR Code

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Cho, Won-Tae (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Sung, Ki-Whan (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Sun-Sook (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Yun-Soo (Thin Film Materials Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Published : 2003.11.20

Abstract

$Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.

Keywords

References

  1. Suntola, T. Thin Films and Epitaxy in Handbook of CrystalGrowth; Hurle, D. T. J., Ed.; Elsevier Science: Amsterdam, 1994;Vol. 3, pp. 601-663 and references therein.
  2. Ritala, M.; Leskela, M. Deposition and Processing of Thin Filmsin Handbook of Thin Film Materials; Nalwa, H. S., Ed.;Academic Press: San Diego, 2002; Vol. 1, pp. 103-159 andreferences therein.
  3. Wilk, G. D.; Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2001,89, 5243-5275. https://doi.org/10.1063/1.1361065
  4. Copel, M.; Cartier, E.; Gusev, E. P.; Guha, S.; Bojarczuk, N.;Poppeller, M. Appl. Phys. Lett. 2001, 78, 2670-2672. https://doi.org/10.1063/1.1367902
  5. Ritala, M.; Kukli, K.; Rahtu, A.; Raisanen, P. I.; Leskela, M.;Sajavaara, T.; Keinonen, J. Science 2000, 288, 319-321. https://doi.org/10.1126/science.288.5464.319
  6. Raisanen, P. I.; Ritala, M.; Leskela, M. J. Mater. Chem. 2002, 12,1415-1418. https://doi.org/10.1039/b201385c
  7. Juppo, M.; Tahtu, A.; Ritala, M.; Leskela, M. Langmuir 2000, 16,4034-4039. https://doi.org/10.1021/la991183+
  8. Koh, W.; Ku, S.-J.; Kim, Y. Thin Solid Films 1997, 304, 222-224. https://doi.org/10.1016/S0040-6090(97)00132-6
  9. Barreca, D.; Battiston, G. A.; Gerbasi, R.; Tondello, E. J. Mater.Chem. 2000, 10, 2127-2130. https://doi.org/10.1039/b002968h
  10. Higashi, G. S.; Fleming, C. G. Appl. Phys. Lett. 1989, 55, 1963-1965. https://doi.org/10.1063/1.102337
  11. Ott, A. W.; McCarley, K. C.; Klaus, J. W.; Way, J. D.; George, S.M. Appl. Surf. Sci. 1996, 107, 128-136. https://doi.org/10.1016/S0169-4332(96)00503-X
  12. George, S. M.; Ott, A. W.; Klaus, J. W. J. Phys. Chem. 1996, 100,13121-13131. https://doi.org/10.1021/jp9536763
  13. Green, M. L.; Gusev, E. P.; Degraeve, R.; Garfunkel, E. L. J. Appl.Phys. 2001, 90, 2057-2121. https://doi.org/10.1063/1.1385803
  14. Renault, O.; Gosset, L. G.; Rouchon, D.; Ermolieff, A. J. Vac. Sci.Technol. A 2002, 20, 1867-1876. https://doi.org/10.1116/1.1507330
  15. Klein, T. M.; Niu, D.; Epling, W. S.; Li, W.; Maher, D. M.; Hobbs,C. C.; Hegde, R. I.; Baumvol, I. J. R.; Parsons, G. N. Appl. Phys.Lett. 1999, 75, 4001-4003. https://doi.org/10.1063/1.125519
  16. Jakschik, S.; Schroeder, U.; Hecht, T.; Gutsche, M.; Seidl, H.;Bartha, J. W. Thin Solid Films 2003, 425, 216-220. https://doi.org/10.1016/S0040-6090(02)01262-2

Cited by

  1. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process vol.97, pp.12, 2005, https://doi.org/10.1063/1.1940727
  2. ALD and MOCVD of Ga2O3 Thin Films Using the New Ga Precursor Dimethylgallium Isopropoxide, Me2GaOiPr vol.17, pp.7-9, 2011, https://doi.org/10.1002/cvde.201106879
  3. , as an alternative aluminum precursor vol.30, pp.2, 2012, https://doi.org/10.1116/1.3683057
  4. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends vol.113, pp.2, 2013, https://doi.org/10.1063/1.4757907
  5. Atomic Layer Deposition in a Metal–Organic Framework: Synthesis, Characterization, and Performance of a Solid Acid vol.29, pp.3, 2017, https://doi.org/10.1021/acs.chemmater.6b03880
  6. Atomic Layer Deposition of TiO2 Thin Films from Ti(OiPr)2(dmae)2 and H2O vol.25, pp.4, 2003, https://doi.org/10.5012/bkcs.2004.25.4.475
  7. Atomic layer deposition of nickel oxide films using Ni(dmamp)2 and water vol.23, pp.4, 2003, https://doi.org/10.1116/1.1875172
  8. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  9. Metal-organic chemical vapor deposition of aluminum oxide thin films via pyrolysis of dimethylaluminum isopropoxide vol.28, pp.2, 2003, https://doi.org/10.1116/1.3294718
  10. Characterization of plasma-enhanced atomic layer deposition of Al2O3 using dimethylaluminum isopropoxide vol.32, pp.2, 2014, https://doi.org/10.1116/1.4866378
  11. Possibility of Controlling the Impurity Concentration in the Near-Surface Layers of Films Grown by the ALD Method vol.48, pp.4, 2003, https://doi.org/10.1134/s1063739719040048
  12. Unravelling the selective growth mechanism of AlOx with dimethylaluminum isopropoxide as a precursor in atomic layer deposition: a combined theoretical and experimental study vol.8, pp.8, 2020, https://doi.org/10.1039/c9ta11575g
  13. Charge Transporting Materials Grown by Atomic Layer Deposition in Perovskite Solar Cells vol.14, pp.4, 2021, https://doi.org/10.3390/en14041156
  14. A review of atomic layer deposition for high lithium-ion battery performance vol.15, pp.None, 2003, https://doi.org/10.1016/j.jmrt.2021.10.138